Are Intermittent Inhaled Steroids an Effective Option to Treat Asthma in Children?

Stanley J. Szefler, M.D. Director, Pediatric Asthma Research Program Breathing Institute Children's Hospital Colorado; Professor of Pediatrics University of Colorado Denver School of Medicine

Disclosure

Consultant for Aerocrine, Boehringer Ingelheim, Genentech, Glaxo Smith Kline, Merck, Novartis and Roche

Drug and Device Development Program

NIH Grant support:

NHLBI AsthmaNet
NIAID Inner City Asthma Consortium
NIEHS/EPA Childhood and Environmental Health Center Grant
Clinical Trials and Translation Science Program

Disclosure

Other Grant support (continued):

CDPHE Colorado Cardiovascular, Cancer and Pulmonary Disease Program
Caring for Colorado Foundation,
Seasons for Sharing, a McCormick Foundation
Glaxo Smith Kline - *Building Bridges* program

Population Health Program

Evolving Patterns in Asthma Management

Period	Goal of Management	Medications	
1960s	Relieve bronchospasm	Short-acting ß-agonists	
1970s	Prevent bronchospasm	Albuterol, theophylline	
1980s	Prevent allergen- induced bronchospasm	Cromolyn	
1990s	Prevent and resolve inflammation	ICS, LT modifiers, LABA, ICS/LABA	
2000s	Asthma control	Anti IgE	
2010s	Personalized medicine; Early intervention; Exacerbation prevention	Patient characteristics, biomarkers, genetics; Immunomodulators	
2020s	Population Health Management	Individualized Treatment Strategies	

Primary Goal of Therapy: Achieving and Maintaining Asthma Control

- Primary goal of asthma therapy is to enable a patient to *achieve and maintain control* over their asthma
 - Eliminate impairments including symptoms, functional limitations, poor quality of life, and other manifestations of asthma
 - Reduce risk of exacerbations, ED visits, and hospitalizations
- Treatment goals are identical for all levels of asthma severity

NHLBI. National Asthma Education and Prevention Program. Full report of the Expert Panel: Guidelines for the Diagnosis and Management of Asthma (EPR-3). Available at: http://www.nhlbi.nih.gov/guidelines/asthma/asthgdln.htm. Accessed August 31, 2007.

Considerations in Intermittent Strategies

- Age of patient
- Type of strategy
- Body of evidence
- Education
- Guidelines discussion

Clinical reviews in allergy and immunology

Series editors: Donald Y. M. Leung, MD, PhD, and Dennis K. Ledford, MD

Approaches to stepping up and stepping down care in asthmatic patients

Alex Thomas, MD,^a Robert F. Lemanske, Jr, MD,^{a,b} and Daniel J. Jackson, MD^a Madison, Wis

J Allergy Clin Immunol 2011;128:915-24

Various Intermittent Strategies

- Maintenance and prn ICS/LABA [SMART]
- Prn ICS/SABA rescue therapy [TREXA]
- ICS short course [MIST]
- Seasonal [PROSE]

Terminology

- Step-Up long term for lack of control
- Step-Up short term temporary loss of control
- Step-Up intermittent treating symptoms related to variability of disease

Other strategies:

 Seasonal intervention – for prevention of anticipated exacerbations

SMART Reduces Exacerbations

O'Byrne et al., AJRCCM 2005

PEAK: Study Design

- Randomized, multicenter, double-blind, parallel group, placebo-controlled trial
- 285 two and three year olds at high-risk for asthma
- Fluticasone 44 μg/puff or placebo (2 puffs b.i.d.)

Asthma Predictive Index

- Identify high risk children (ages 2 & 3):
 - ≥ 4 wheezing episodes in the past year (at least one must be MD diagnosed) PLUS
 - One major criteria OR Two minor criteria
 - Parent with asthma
 - Atopic dermatitis eosinophilia (≥4%)
 - Aero-allergen sensitivity to

- Food sensitivity
 - Peripheral
 - Wheezing not related infection

Modified from: Castro-Rodriguez, AJRRCM, 2000

PEAK Study: Episode-free Days

Characteristics Associated with EFD

Response

	Percentage of EFDs			
Stratifying Variable	ICS Mean (95% CI)	Placebo Mean (95% Cl)	Difference (95% Cl)	P-value (ICS vs Placebo)
Male	93 (92, 95)	86 (83, 89)	7.3 (3.9, 11.1)	0.0005
Female	92 (89, 94)	92 (89, 94)	0.1 (-3.4, 3.5)	0.9
Caucasian	93 (91, 95)	84 (80, 88)	9.1 (4.8, 13.9)	0.0001
Non-Caucasian	92 (89, 94)	93 (91, 94)	-1.0 (-3.9, 1.7)	0.6
Run-In EFD <80%	92 (90, 94)	84 (79, 87)	8.6 (4.2, 13.2)	0.0009
Run-In EFD >=80%	93 (91, 95)	93 (91, 95)	0.0 (-2.5, 2.5)	0.9
ED/Hospitalization History	95 (93, 96)	87 (83, 90)	7.7 (3.9, 11.6	0.0004
No ED/Hospitalization History	90 (87, 92)	91 (89, 93)	-1.1 (-4.4, 2.1)	0.6
≥1 Positive Aeroallergen Skin Test	93 (91, 94)	86 (83, 89)	6.5 (3.2, 10.0)	0.0027
Negative Aeroallergen Skin Test	93 (90, 95)	92 (89, 94)	0.9 (-2.5, 4.4)	0.6

Bacharier LB et al. J Allergy Clin Immunol 2009

Maintenance vs Intermittent Inhaled Steroids In Wheezing Toddlers (MIST) Trial

A trial in preschool children with recurrent wheezing, positive asthma predictive index and prior year severe wheezing exacerbation that compares the effect of maintenance low-dose ICS versus intermittent high-dose ICS at the onset of respiratory tract illnesses on the rate of exacerbations requiring systemic corticosteroids

MIST Design

Randomized, DBPC parallel multicenter trial comparing maintenance low-dose ICS vs intermittent high-dose ICS x 7days with every RTI on rate of exacerbations requiring systemic corticosteroids.

* Maintenance therapy continued during every respiratory tract illness

‡ Conventional episodic therapy: albuterol qid x 2 days, then prn and, if indicated, oral steroid rescue

Primary Efficacy Outcome

 Rate of severe exacerbations requiring systemic corticosteroids.

Frequency of Exacerbations

Time to 1st Exacerbation

Time to Treatment Failure

MIST Results

Secondary Outcomes

Frequency of Respiratory Tract Illnesses (RTI)

Approximately 25% of RTI required oral prednisolone in both groups.

Viruses detected in 83% of nasal samples during RTI in both groups.

Severity of RTI

Acute Visits and EFD*

	Intermittent	Daily	Treatment
	(N=139)	(N=139)	Effect
Results	Treatment Gr	oup Event	Relative
	Rates (per pe	rson-year)	Rate
<pre># of urgent/emergent care visits due to asthma</pre>	2.37	2.40	0.99
	(1.89, 2.97)	(1.91, 3.02)	(0.72, 1.35)
	Treatment Group Averages		Average Difference
% episode-free days/year	78 (75, 80)	78 (76, 81)	-0.7 (-4, 2)
% episode-free days/year (excluding RTIs)	85 (82, 87)	84 (82, 86)	0.5 (-3, 4)

*No significant group differences.

No significant differences between groups in changes from baseline in

- 1. Infant Toddler Quality of Life and
- 2. % days with albuterol use (about 5%)

24

Individualized Therapy for Asthma in Toddlers (INFANT)

Anne M. Fitzpatrick, Ph.D. Daniel J. Jackson, M.D. Stanley J. Szefler, M.D.

And the INFANT Working Group

INFANT Innovation – Addressing the problem in a new way

- INFANT will be the first study to:
 - Address the efficacy of three asthma treatment strategies head-on in preschool children.
 - Test as-needed ICS/SABA therapy in young children.
 - Predict the differential response to asthma therapies in preschool children using a combination of clinical and molecular biomarkers.

INFANT Primary Null Hypothesis

- In preschool children 12-59 months of age with persistent asthma, the following Step 2 asthma therapies will provide similar degrees of asthma control:
 - Daily inhaled corticosteroids (ICS)
 - Daily leukotriene receptor antagonists (LTRA)
 - As-needed ICS plus SABA (rescue treatment)

Study Design – INFANT/AVICA

Primary Outcome

- <u>Composite variable</u> of asthma control encompassing domains of asthma risk and impairment, with two levels of assessment:
 - Time from the start of the treatment period to an asthma exacerbation that requires systemic corticosteroids
 - Indicator of asthma "risk"
 - Annualized number of asthma control days within that treatment period
 - Indicator of asthma "impairment"

Conclusions

- Intermittent ICS therapy is a potential option in young children with emerging asthma
- Response should be monitored carefully and stepped up to continuous therapy, if
 - 3 or more exacerbations in one year, or

 symptoms occur 2 or more times per week, or

nocturnal symptoms develop