

Eosinophilic Esophagitis: Pathogenesis and Role of Food Allergy

Norma Rubini, MD, PhD Associate Professor of Allergy and Immunology Federal University of the State of Rio de Janeiro UNIRIO

History

- 1993 Atwood et al 11 adults with dysphagia, normal pH probe and eosinophilic infiltration in esophagus mucosa
- 1995 Kelly et al 10 children with severe GERD unresponsive to medicines
- Elemental diet => resolution of symptoms and reduction in eosinophils count
- ✓ Food challenges => recurrence of symptoms in 9/10

Atwood SE et al, Dig Dis Sci 1993 Kelly K et al, Gastroenterology 1995

Epidemiology

- Prevalence
- ✓ Pediatric population Hamilton County, Ohio 4:10,000
- ✓ Adult Swiss cohort 2:10,000 adults
- ✓ Recent studies in Europe and USA 6:10,000 individuals
- Male to female rate 3:1
- Caucasian (~ 80%)
- Atopy (~ 60%)

Noel RJ et al, N Engl J Med 2004, DeBrosse CW et al, JACI 2010, Sperry SLW et al, Am J Gastroenterology 2011 Philpott H et al, Clin Exp Allergy 2014

Definition

"Eosinophilic esophagitis represents a chronic immune/antigen-mediated esophageal disease characterized clinically by symptoms related to esophageal dysfunction and histologically by eosinophil-predominant inflammation."

Liacouros et al, Eosinophilic esophagitis: Updated consensus recommendations for children and adults, JACI 2011; 128: 3-20

Pathogenesis of EoE

Straumann A and Shoepfer A, Gut 2014 Raheem M et al, Frontiers Ped 2014 Wechler JB and Bryce PJ, Gastroenterol Clin N Am 2014

EoE – Pathological process

- Acute narrowing of the esophageal lumen by inflammation and oedema.
- Fixed narrowing and limited distensibility of the lumen by remodeling.
- Dynamic and variable narrowing caused by muscular contraction or spasm.

Philpott H et al, Pharmacol Ther 2014

Pathogenesis of EoE

Modified from Wechler JB e Bryce PJ, Gastroenterol Clin N Am 2014 and Sherril and Rothenberg, JACI 2011

Genetic risk variants in EoE

Sherril and Rothenberg, JACI 2011;128: 23-32

Established risk factors

Risk Factor	Proposed mechanism(s)
Male gender	TSLP on sex chromosomes, Relaxin
Caucasian	Non-X linked SNP's (e.g. Filaggrin, Eotaxin-3)
Atopy	IgE mediated inflammatory infiltration

Philpott H et al, Clin Exp Allergy 2014

Putative risk factors for EoE

Risk Factor	Proposed mechanism(s)
Impaired barrier function	Increased antigen exposure
Impaired tolerance to food antigens	Timing and nature of food antigen exposure
Commercially prepared foods	Agglutined proteins incite immune reaction
Proton pump inhibitor use	Proteins are not denatured => greater antigen exposure
Aeroallergens in spring/summer	Exposure of air passages => inflammatory reaction and trafficking of eosinophils
Living in a temperate or arid climate	Low vitamin D and/or higher aeroallergen exposure
Migration as adult	Novel antigen incite immune reaction
Increased fibrotic remodeling	Decreased relaxin expression, SNP's for TGF- β and ACE

Modified from Philpott H et al, Clin Exp Allergy 2014

Endoscopic features

Liacouros et al, JACI 2011; 128: 3-20

Histologic features

- Mucosal eosinophilia (>15 / hpf)
- Eosinophil microabscess formation
- Superficial layering of eosinophils
- Extracellular eosinophil granules
- Epithelial desquamation
- Basal zone hyperplasia
- Dilated intercellular spaces
- Subepithelial fibrosis / sclerosis
- Mastocytosis and mast cell degranulation
- CD8 lymphocytes and B cells

Liacouros CA et al, JACI 2011; 128: 3-20

Histopathologic features

Eosinophilic infiltration (110 eosinophils/hpf) and superficial layering of eosinophils

MBM, male, Caucasian, 22 years – EoE and milk allergy

N Rubini, 2012

EoE and food allergy

- High prevalence of concomitant atopic diseases (>50%).
- Elevated serum IgE and blood eosinophilia 50% to 60%.
- Food hypersensitivity has been reported in 19% 73% of children and 13% - 25% of adults with EoE.
- Clinicopathological responsiveness to dietary therapy.
- De novo EoE has been observed with oral immunotherapy used for treatment of food allergies.

Liacouros et al, JACI 2011 Haheem M et al, Frontiers Ped 2014 Straumann A, Schoepfer A, Gut 2014

Allergic sensitization in pediatric patients with EoE

Erwin et al, Ann Allergy Asthma Immunol 2010; 104: 496-502

Allergic sensitization in pediatric patients with EoE

N = 53

Erwin et al, Ann Allergy Asthma Immunol 2010; 104: 496-502

EoE and Food Allergy – Skin Prick test

Food (n)	PPV (%)	NPV (%)	Sens (%)	Spec (%)
			40.0	07.0
Milk (46)	95,7	57,7	42,3	97,6
Egg (39)	84,8	75,4	65,1	90,2
Soy (28)	70,0	68,9	37,8	89,5
Wheat (26)	77,8	64,7	18,9	96,5
Corn (26)	57,1	71,3	13,8	95,4
Beef (23)	81,8	74,7	30,0	96,9
Chicken (15)	50,0	83,3	26,3	93,3
Rice (14)	50,0	85,6	13,3	97,5
Potato (11)	60,0	89,9	25,0	97,6

n = 316

Spergel JM et al, JACI 2007; 119:11

EoE and Food Allergy – Atopy Patch Test (APT)

Food (n)	PPV (%)	NPV (%)	Sens(%)	Spec (%)
Milk (46)	83,3	58,7	43,5	90,2
Egg (39)	78,3	82,8	62,1	91,4
Soy (28)	66,7	87,3	66,7	87,3
Wheat (26)	74,2	83,9	71,9	85,5
Corn (26)	65,8	93,9	89,3	78,0
Beef (23)	94,4	87,0	65,4	98,4
Chicken (15)	66,7	95,7	80,0	91,7
Rice (14)	59,1	96,9	86,7	87,5
Potato (11)	53,8	94,6	63,6	92,1

n = 316

Spergel JM et al, JACI 2007; 119:11

EoE and Food Allergy- APT + SPT

Food	PPV (%)	NPV (%)	Sens(%)	Spec (%)
Milk	81	44	50	78
Egg	60	93	81	83
Wheat	42	88	65	74
Soy	33	93	71	73
Peanut	22	99	94	83
Beef	31	96	73	82
Corn	42	99	95	82
Chicken	32	98	88	80
Potato	36	98	81	90

Spergel JM et al, JACI 2012; 130: 461

n = 319

Dietary modalities

Item	Elemental diet	Allergy testing elimination diet	Empirical elimination diet
Clinicopathological success rate	>80%	Children – 50% - 70% Adults – 20% - 30%	50% - 70%
Number of elimination foods	All food groups eliminated	Typically \leq 4foods eliminated	\leq 6 foods eliminated
Numbers of endoscopies required	++++	+	++
Drawbacks	Costly May require feeding tube Impact on QoL ++++	Impact on QoL ++	Impact on QoL ++

Identification of causative foods in children with EoE

N = 319

Spergel JM et al, JACI 2012; 130: 461

Four-food elimination diet

- Prospective multicenter study in 4 Spanish hospitals between 2012 – 2014
- Population: 52 adults with EoE
- Four-food diet: milk, wheat, egg and soy/legumes
- Results: 28 patients (54%) achieved clinicopathological remission

Molina-Infante J et al, JACI 2014;134:1093-9

Diagnostic investigation of food allergy in EoE

Conclusions

- Eosinophilic esophagitis (EoE) is an inflammatory disorder that is most likely initiated by a hypersensitivity reaction to allergic insult, with a latephase characterized by eosinophil recruitment and subsequent tissue damage.
- The most clearly defined risk factors for EoE are gender (male predominance), race (Caucasians) and atopy.
- Most patients with eosinophilic esophagitis have compelling evidence of IgE-mediated hypersensitivity to foods, as determined by increased food-specific IgE or abnormal skin prick test.
- Removal of disease-exacerbating foods has proven to be successful in treating the disease and elimination diets have thus become the mainstay of therapy in EoE.
- Diet therapy, empiric or allergic test-directed, is an accepted and efficacious alternative to elemental diet that offers improved compliance, better food choices, less food reintroduction, and fewer endoscopies.