Novel Approaches to Immunotherapy
WAO WISC 2014
Rio de Janeiro, Brazil
6th–9th Dec 2014

Mark Larché
Divisions of Clinical Immunology & Allergy and Respirology,
Dept. Medicine & Firestone Institute for Respiratory Health,
McMaster University,
Hamilton, ON
Canada
Disclosure Statement
Mark Larché

In relation to this presentation, I declare the following, real or perceived conflicts of interest:

• - Circassia Pharmaceuticals plc- Intellectual property rights
• - Circassia Pharmaceuticals plc- Consulting fee
• - Circassia Pharmaceuticals plc- co-Founder/Ownership interest
• - Adiga Life Sciences – Consulting
• - Abbott – Consulting (spouse)
• - Abbott – Honoraria (spouse)

• - Canadian Institutes for Health Research: operating grants
• - NIAID: U19 cooperative agreement U19AI100266
• - Immune Tolerance Network: subcontract
• - Scleroderma Society of Ontario: PhD Studentship
• - Adiga Life Sciences: research contracts
• - Canada Research Chair: salary award
• - McMaster University/GlaxoSmithKline: endowed Chair
• - Canada Foundation for Innovation: infrastructure award
• - AllerGen Network of Centres of Excellence; operating grants
Factors that limit the effectiveness of current immunotherapy approaches

- Whole proteins
- Conformational B cell epitopes
- Cross-linking of allergen-specific IgE
- Mast cell/basophil activation
- Adverse events (local & systemic)
- Dose limitation
- Protracted treatment period (poor compliance; <20% completion)

Novel approaches to immunotherapy aim to reduce allergenicity
SAFE - EFFECTIVE - QUICK

Elephant in the room
Synthetic Peptide Immuno-Regulatory Epitopes (SPIRE)

- Short, synthetic sequences of amino acids representing immunodominant T cell epitopes
- Chemically defined, standardized
- Reduced secondary/tertiary structure
- Markedly reduced capacity to cross-link IgE on effector cells
- Modulation of allergen-specific T cell responses, induction of immuno-regulation
- Short treatment course
- No dose escalation
- Improved safety
- Enduring efficacy
Cat
MHC class II restriction map of Fel d 1: defining epitopes for therapy

Worm et al. JACI 2011
Cat: Study Design CP005

<table>
<thead>
<tr>
<th>Design CP005A/B/C</th>
<th>N=202</th>
<th>N=89</th>
<th>N=51</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline Challenge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EEC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 days</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3hrs/day</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50ng/m³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fel d 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dosing (3 months)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8x3nmol 2 wks apart</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4x6nmol 4 wks apart*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8xplacebo wks apart</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post treatment challenge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EEC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-22 wk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50ng/m³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fel d 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP005A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post treatment challenge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EEC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-54 wk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50ng/m³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fel d 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP005B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post treatment challenge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EEC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-104 wk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50ng/m³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fel d 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* infill placebo to maintain blind
Total Rhinoconjunctivitis Symptom Scores (TRSS) measured on 4 nasal and 4 ocular symptoms

• Patient **self-rated symptom scores** used as primary measure of efficacy

• Symptoms scored on a 4 point scale
 • 0: absent
 • 1: mild, barely noticeable
 • 2: moderate, annoying / troublesome
 • 3: severe, incapacitating

• Ocular symptoms scored on scale 0-3 for itchy eyes, watery eyes, red eyes, sore eyes

• Nasal symptoms scored on scale of 0-3 for running nose, sneezing, blocked nose, itchy nose

• TRSS score of 8 could be 8 “mild / barely noticeable scores”
• TRSS score of 12 could be 4 “mild / barely noticeable” and 4 “moderate / annoying” scores
CP005/5A efficacy and treatment duration study: Phase IIb

Randomized, double-blind, placebo-controlled parallel group trial with Environmental Exposure Chamber (EEC)

Marked treatment effect evident on day 1 which increases with time.

Peak change in TRSS on fourth day almost 6 TRSS points.

Median change in TRSS between 8 x 3nmol and 4 x 6nmol almost identical at 18-22wks.

4 x 6 nmol
placebo

50-54wk follow-up
9 months after last dose

Patel et al., JACI 2013
Fel d 1–derived peptide antigen desensitization shows a persistent treatment effect 1 year after the start of dosing: A randomized, placebo-controlled study

Deopen Patel, MD,*, Peter Couroux, MD,** Pascal Hickey, PhD,† Anne Marie Salapatek, PhD,‡ Paul Laidler, PhD,‡ Mark Larche, PhD,§ and Roderick P. Hafner, PhD

Mississauga and Hamilton, Ontario, Canada, and Oxford, United Kingdom

JACI 2013

TRSS: Total Rhinitis Symptom Score (nasal and ocular symptoms)

EEC chamber

TRSS (24 point scale)

Adverse events indistinguishable from placebo

BL

18-22wk

n=202

50-54wk

n=89
Treatment effect larger in more symptomatic subjects
TRSS scores for subjects at two year follow up

Baseline Challenge

Day 1

Day 2

Day 3

Day 4

Post Treatment Challenge at 100-104w

Day 1

Day 2

Day 3

Day 4
CATALYST – Double blind placebo controlled Phase III study ongoing

• 1,182 adult & adolescent subjects
 • More than 1,100 subjects already randomized

• Two Cat-SPIRE active treatment arms, evaluating effect of one and two courses of treatment

• Primary endpoint change in Combined Score (Symptoms + Medication Use) measured one year after start of treatment

• Includes patients with GINA 1 asthma

• Exploratory endpoints include evaluating changes in asthma control in asthmatic subjects and the numbers of subjects developing asthma during the course of the study to provide a baseline for potential future follow-up.

• Aim to recruit all subjects by December 2014; results Spring 2016
House Dust Mite
Population Description

Key Inclusion Criteria

- Male or female, aged 18-65 years.
- A minimum 1-year documented history of rhinoconjunctivitis on exposure to HDM.
- Positive skin prick test to whole *Der p* allergen at least 3 mm larger than negative control
- *Minimum qualifying symptom scores were a TRSS of 10 (out of a possible 24) on at least one time point on Days 2 & 3 of baseline challenge*

Key Exclusion Criteria

- Subjects with asthma or an FEV₁ < 80 % of predicted.
- Allergen or peptide immunotherapy during the last 12 months or any history of HDM immunotherapy.
- Symptoms of a clinically relevant illness, in the Investigator’s opinion, within 6 weeks prior to the Screening Visit.
Study TH002 Efficacy Endpoints

Co-Primary Endpoints:

• Mean TRSS, comprising:
 • Severity of 4 nasal and 4 non-nasal symptoms
 • At the 1 to 4 hour time points, inclusive
 • During Days 2 and 3 of EEC Challenge
 • In active treatment groups compared to placebo
 • 19 and 49-50 weeks after completion of Baseline Challenge

• The analysis at 19 weeks was added as a co-primary during the study when the number of withdrawals was greater than expected
 • Withdrawals equal across all groups including placebo
 • Withdrawals not due to Adverse Reactions
TH002: House Dust Mite
4x12 nmol versus placebo at 50 weeks

Primary endpoint on days 2 and 3 only
Treatment effect larger if day 1 included

p = 0.02

Inverse Change from Baseline (Positive Treatment Effect)

-1
0
1
2
3
4
5
6
7

0.0hr
0.5hr
1.0hr
1.5hr
2.0hr
2.5hr
3.0hr
3.5hr
4.0hr

0.0hr
0.5hr
1.0hr
1.5hr
2.0hr
2.5hr
3.0hr
3.5hr
4.0hr

0.0hr
0.5hr
1.0hr
1.5hr
2.0hr
2.5hr
3.0hr
3.5hr
4.0hr

Week 50 Day 1
Week 50 Day 2
Week 50 Day 3

4x12 nmol
Placebo
Grass Pollen
TG002: Grass Pollen
8x6nmol vs. placebo at 24-28wks
Subjects with mean baseline TRSS >8

Change in TRSS (Baseline score minus post treatment challenge)

- 8 x 6nmol
- Placebo

P=0.0346
TG002: Grass Pollen
8x6nmol vs. placebo at 24-28wks
Subjects with mean baseline TRSS ≥12
Allergen-specific T-cell tolerance induction with allergen-derived long synthetic peptides: Results of a phase I trial

Jean-Marc Fellrath, MD, Alexander Kettner, PhD, Nathalie Dufour, Christian Frigerio, MD, Dominique Schneeberger, MD, Annette Leimgruber, MD, Gampietro Corradin, PhD, and François Spertini, MD

Institute of Allergy and Immunology, University of Lausanne and Epalinges, Switzerland

JACI 2003

Anergis

Bee Venom allergic n=9 active n=7 placebo

Active treatment: 3 x long synthetic peptides (LSP)

Day 0: injections at 30 min intervals - 0.1ug, 1.0, 10, 20, 40, 80, 100ug

Day 4, 7, 14, 42, 70: 100ug maintenance dose*

Placebo treatment: ALK diluent

3/9 treated subjects experienced upper trunk flushing and pruritis 2-3 hrs after peptide dosing, two subjects had palm pruritis at Day 70 injection

*two subjects received maintenance doses of 300ug up to Day 42. One was withdrawn due to AE and the other returned to 100ug for Day 70
AN003

Safety: “a few mild and reversible delayed systemic reactions occurred”

Nasal Provocation: no change

Specific antibody responses: sustained 4.5-fold increase in specific IgG4 over baseline

Mini-RQLQ: Total Score and Rhino-Conjunctivitis Symptom Score 31% and 35% lower than placebo (statistical trend)
Asthma Score 65% lower than placebo (statistical trend)
Characterization of a Hypoallergenic Recombinant
Bet v 1 Variant as a Candidate for Allergen-Specific Immunotherapy

Double-blind, placebo-controlled, dose-ranging study of new recombinant hypoallergenic Bet v 1 in an environmental exposure chamber

W. Meyer, A. Narkus, A. M. Salapatek & D. Häfner

Allergopharma

Bet v 1 folding variant
Biomay/Valenta BM32

Focke-Tejkl et al., J Allergy Clin Immunol 2014 in press, courtesy of Rudolf Valenta
IgG blocking antibodies: not the whole story

OIT is associated with increases in serum allergen-specific IgG/G₄

However, severe and unpredictable reactions can occur without warning, suggesting that mechanisms in addition to “blocking antibody” may have a role in protection
Cytos

Der p 1 peptide on virus-like particles is safe and highly immunogenic in healthy adults

Displaying Fel d1 on virus-like particles prevents reactogenicity despite greatly enhanced immunogenicity: a novel therapy for cat allergy

Nicole Schmitz, Klaus Dietmeier, Monika Bauer, Melanie Maudrich, Stefan Utzinger, Simone Muntwiler, Philippe Saudan, and Martin F. Bachmann
Use of A-type CpG oligodeoxynucleotides as an adjuvant in allergen-specific immunotherapy in humans: a phase I/IIa clinical trial

10wk open-label HDM immunotherapy + 300ug QbG10 in 21 subjects

<table>
<thead>
<tr>
<th>Time point (weeks)</th>
<th>0</th>
<th>12</th>
<th>34</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT response (%)</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2. Conjunctival provocation test

<table>
<thead>
<tr>
<th>Time of measurement</th>
<th>Baseline</th>
<th>12 weeks</th>
<th>34 weeks</th>
<th>48 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ReSDI</td>
<td>10.5 (5−17)</td>
<td>1.5 (0−7)</td>
<td>3 (0−12)</td>
<td>2 (0−8)</td>
</tr>
<tr>
<td>AsSDI</td>
<td>2 (0−6)</td>
<td>0 (0−3)</td>
<td>0 (0−3)</td>
<td>0 (0−3)</td>
</tr>
<tr>
<td>CoR</td>
<td>3 (1−4)</td>
<td>0 (0−3)</td>
<td>1 (0−2)</td>
<td>0 (0−2)</td>
</tr>
<tr>
<td>CoA</td>
<td>3 (0−6)</td>
<td>0 (0−4)</td>
<td>0 (0−4)</td>
<td>0 (0−3)</td>
</tr>
</tbody>
</table>

Table 3. Recorded symptoms of rhinoconjunctivitis (ReSDI) and asthma (AsSDI) in daily life as well as recorded scores for the daily-life consequences of rhinitis (CoR) and asthma (CoA): median (minimum and maximum)
Assessment of clinical efficacy of CYT003-QbG10 in patients with allergic rhinoconjunctivitis: a phase IIb study

L. Klimek¹, J. Willers², A. Hammann-Haenni², O. Pfarr², H. Stocker², P. Mueller², W. A. Renner² and M. F. Bachmann²

¹Zentrum fuer Rhinologie & Allergologie, Wiesbaden, Germany and ²Cytos Biotechnology AG, Schlieren, Switzerland

n=299
6 x weekly s.c. QbG10
1) Placebo
2) 0.5mg QbG10
3) 1mg QbG10

Pre-treatment
Post-treatment

ACS post therapy significant vs placebo but NOT difference in deltas

Table 2. Mini rhinoconjunctivitis quality of life questionnaire (MiniRQOLI)

<table>
<thead>
<tr>
<th>Treatment group</th>
<th>N</th>
<th>Median</th>
<th>25-75%</th>
<th>Min-Max</th>
<th>P-value vs Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>94</td>
<td>1.57</td>
<td>1.00-2.21</td>
<td>0.14-5.00</td>
<td>0.37</td>
</tr>
<tr>
<td>0.5 mg QbG10</td>
<td>93</td>
<td>1.32</td>
<td>0.57-1.93</td>
<td>0.00-4.64</td>
<td>0.38</td>
</tr>
<tr>
<td>1 mg QbG10</td>
<td>94</td>
<td>1.29</td>
<td>0.64-1.79</td>
<td>0.00-4.23</td>
<td>0.30</td>
</tr>
<tr>
<td>During treatment (day 14)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>94</td>
<td>1.74</td>
<td>0.57-1.71</td>
<td>0.00-3.85</td>
<td>0.36</td>
</tr>
<tr>
<td>0.5 mg QbG10</td>
<td>93</td>
<td>0.93</td>
<td>0.43-1.86</td>
<td>0.00-4.86</td>
<td>0.35</td>
</tr>
<tr>
<td>1 mg QbG10</td>
<td>94</td>
<td>0.98</td>
<td>0.59-1.71</td>
<td>0.00-4.29</td>
<td>0.37</td>
</tr>
<tr>
<td>During treatment (day 28)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>95</td>
<td>0.93</td>
<td>0.43-1.64</td>
<td>0.00-3.57</td>
<td>0.45</td>
</tr>
<tr>
<td>0.5 mg QbG10</td>
<td>93</td>
<td>0.93</td>
<td>0.43-1.64</td>
<td>0.00-3.57</td>
<td>0.45</td>
</tr>
<tr>
<td>1 mg QbG10</td>
<td>94</td>
<td>0.96</td>
<td>0.59-1.71</td>
<td>0.00-4.29</td>
<td>0.37</td>
</tr>
<tr>
<td>Post-treatment (day 49)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>95</td>
<td>1.21</td>
<td>0.57-1.71</td>
<td>0.00-4.44</td>
<td></td>
</tr>
<tr>
<td>0.5 mg QbG10</td>
<td>92</td>
<td>0.79</td>
<td>0.39-1.46</td>
<td>0.00-4.50</td>
<td>0.0498</td>
</tr>
<tr>
<td>1 mg QbG10</td>
<td>94</td>
<td>0.71</td>
<td>0.43-1.50</td>
<td>0.00-4.29</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Stats refer to “disease scores” vs placebo NOT difference in deltas

Primary Outcome: Average Combined Symptom & Medication Score (ACS)
Symptoms: 7 field RC scores (0-3) which was averaged to give Daily Symptom Score (0-3)
Medication: no drug (0), nasal/oral anti-histamine (1), topical steroid (2), topical steroid (3)
ACS calculated each day as arithmetic mean of average Daily Symptom Score and the Medication Score

Table 3. Conjunctival provocation test (CPT)

<table>
<thead>
<tr>
<th>Treatment group</th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
<th>P-value vs Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>95</td>
<td>2.27</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>0.5 mg QbG10</td>
<td>93</td>
<td>2.24</td>
<td>0.74</td>
<td>0.04</td>
</tr>
<tr>
<td>1 mg QbG10</td>
<td>94</td>
<td>2.36</td>
<td>0.84</td>
<td>0.95</td>
</tr>
<tr>
<td>Post-treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>95</td>
<td>2.66</td>
<td>1.19</td>
<td></td>
</tr>
<tr>
<td>0.5 mg QbG10</td>
<td>93</td>
<td>2.68</td>
<td>1.17</td>
<td>0.95</td>
</tr>
<tr>
<td>1 mg QbG10</td>
<td>94</td>
<td>3.02</td>
<td>1.12</td>
<td>0.032</td>
</tr>
</tbody>
</table>

The table shows the allergen concentration (expressed as logCPT) necessary to induce an ocular irritation score of 2 or more. P-values based on Mann-Whitney test.

Follow up: “slight difference” at 6 months, nothing at 12 months

Stats refer to “disease scores” vs placebo NOT difference in deltas

35 sites
Estonia (5), Latvia (3), Lithuania (4), Germany (9), Romania (10), Greece (4)
Competitive recruitment between sites
93% subjects HDM monoallergic
The novel TLR-9 agonist QbG10 shows clinical efficacy in persistent allergic asthma

Kai-Michael Beeh, MD, Frank Kanniess, MD, Frank Wagner, MD, Cordula Schilder, MD, Ingomar Naudts, MD, Anya Hammann-Haenni, PhD, Joerg Willers, PhD, Hans Stocker, PhD, Philipp Mueller, MD, Martin F. Bachmann, PhD, and Wolfgang A. Renner, PhD

63 subjects GINA step 3/4 asthma
1) 7 x 0.9mg QbG10 (n=33)
2) Placebo (n=30)
Asthma stabilization phase followed by withdrawal

Publication states that the study was powered on F_{ENO} an “exploratory” outcome. The primary efficacy outcome is not explicitly stated in the publication nor on clinicaltrials.gov. The F_{ENO} outcome failed to reach statistical significance.
Symptom and Medication Scores broken out

Asthma Control

Blood eosinophilia significantly reduced
No change in PC$_{20}$
No change total IgE and IgG
S-TARget

S-TIR platform: Specific T cell Immunity Remodeler

Modular vaccines that target T cell epitopes to pDC

SG100 is the first product under development for house dust mite allergy

T cell epitopes engineered by shuffling to reduce allergenicity
Rationale

pDC are known to express large quantities of type I IFNs upon exposure to viruses and CpG

Type I IFNs are known to drive Th1 responses and suppress Th2 responses by down-regulating GATA-3

pDC from allergic individuals have significantly reduced type I IFN production in response to CpG

Signaling through FcεRI reduces type I IFN production in response to CpG

SCIT results in a 5-fold increase in type I IFN production in response to CpG

CpG has shown promise in the treatment of allergic diseases but has not been delivered in a targeted fashion i.e. directly to pDC

Recent studies have suggested that CpG works better as an adjuvant when antigen is delivered at the same time as both need to be present in the lysosome for optimal immune responses

Uptake of antigens via Fc receptors is known to deliver antigen to the lysosome and antibody-Fc-mediated antigen uptake is 100-1000 times more efficient than non-specific uptake
Proposed mechanism of action

CpG is conjugated via 3’ linkage rather than 5’
5’ linkage (used in Tolamba) significantly reduces immunostimulatory capacity
Targeted delivery of CpG ODN to CD32 on human and monkey plasmacytoid dendritic cells augments IFNα secretion

Jurjen Tel³, Niels Beenhakker⁵, Gerrit Koopman⁵, Bert ’t Hart⁵, Geert C. Mudde⁴,*, I. Jolanda M. de Vries¹,²

Targeting CpG through CD32 results in a 4-fold increase in type I IFN from pDC (also associated with significantly enhanced TNFα, IL-6, IL-8)
S-TARget future plans

SG100 works in cyno model which will be used for pre-clinical POC

Expect to enter Phase 1 in 2015
Selecta Biosciences

MIT/Harvard spin out

Founders:
Robert Langer (drug delivery),
Omid Farokhzad (nanoparticle development),
Ulrich von Andrian (immunology)

Self-assembling nanoparticles (NP) formulated for optimized molecular targeting, immune evasion and drug delivery

“maximal targeting, maximal stealth”
Immune activation
targeted Synthetic Vaccine Particles (tSVP)

Immune tolerance
targeted tolerogenic Synthetic Vaccine Particles (t²SVP)
Poly(D,L-lactide-co-glycolide) (PLGA) – polyethylene glycol (PEG) – targeting moiety

Increasing viscosity of PLGA regulates cargo release

Changing the length of the PEG regulates NP size

Optimization of targeting moiety optimizes NP targeting

peptide (RGD motif)
protein
sugar
monoclonal antibody
RNA

Precipitation by addition of water induces “self-assembly” cargo is added at precipitation stage
Conclusions

- Evidence in phase 2b for efficacy with T cell peptides (SPIRE) across different allergens
- (unpublished) efficacy for B cell epitope peptides in grass pollen allergy
- Evidence for efficacy with VLP +/- allergen
- Evidence for efficacy with hypoallergenic allergen (rBet v 1-FV)
- Positive surrogate immunological markers with “long peptides”
- Several other adjuvanted strategies under development
Acknowledgements

Steve Harris
Charles Swingland
Rod Hafner
Paul Laidler
Pascal Hickey

Piyush Patel
Anne Marie Salapatek

Robyn O’Hehir

Margitta Worm
Hae-Hyuk Lee
Jörg Kleine-Tebbe

Bernard Maillère
Catherine Texier

Anne Ellis
Charles W. Frankish
Lisa Steacy

Wayne Thomas
Belinda Hales
Wendy-Ann Smith

Helen Neighbour
Elena Tonti
Jing Yu Mu
Cheryl Kipling
Chris Rudulier
Dan Moldaver
Mantej Bharhani
Lesley Wiltshire
Elizabeth Simms
Jennifer Wattie
Mark Inman
Fadwa Majeed

AB Kay
Stephen Durham
Clare Lloyd
Mo Shamji
Danny Altmann
Darren Campbell
Mimi Haselden
Bill Oldfield
Clare Alexander
Runa Ali
Mike Tarzi
Adrienne Verhoef
Betty Lo