Adult asthma diagnosis and treatment

Stephen T Holgate, Faculty of Medicine, University of Southampton, UK
sth@soton.ac.uk

WHO definition of severe asthma (tentative, paper in process of approval)

- Diagnosis of asthma
- Control
- Future risks
- Treatment based on guidelines
- Availability and affordability of treatments
- Quality of treatments

"Uncontrolled asthma which can result in risk of frequent severe exacerbations (or death) and/or adverse reactions to medications and/or chronic morbidity (including impaired lung function or reduced lung growth in children)."

"Severe asthma"

Global Initiative for Asthma (GINA) 2005 guidelines include anti-IgE therapy at step 4

Outcome: asthma control
Outcome: best possible results

Comparison of ICS, LTRA and Placebo in asthmatic patients (≥15 Years) not controlled on prn β2-Agonists

Beclomethasone (n=246)
Montelukast (n=375)

Distribution of individual asthmatic patient responses to the 2 active treatments

Mepolizumab for Prednisone-Dependent Asthma with Sputum Eosinophilia

- Highly efficacious in other eosinophilic disorders (e.g., some but not all) hyper eosinophilic syndromes

- Mepolizumab
 - Placebo

- Treatment: Placebo vs 250 mg, 750 mg

Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre, double-blind, placebo-controlled trial.

- 621 asthmatic patients with a history of recurrent severe asthma exacerbations, and ongoing eosinophil inflammation randomised iv mepolizumab (75 mg, 250 mg, or 750 mg) or placebo; 13 infusions at 4-week intervals.

- Primary outcome: rate of clinically significant asthma exacerbations requiring oral corticosteroids, admission, or a visit to an emergency department.

- Rate of clinically significant exacerbations was 2.40 per patient per year in the placebo group, 1.24 in 75 mg group (48% reduction), 1.46 in the 250 mg group (59% reduction) and 1.15 in the 750 mg group (52% reduction).

Mepolizumab is an effective and well tolerated treatment that reduces the risk of asthma exacerbations in patients with severe eosinophilic asthma.

Secondary outcome measures: Change in blood eosinophil counts pre-bronchodilator FEV1, ACQ and AQOL

- Number of exacerbations in each treatment group

- Cumulative number

- Frequency

- Blood eosinophils

- ACQ

- FEV1
Targeting the IL-5 Receptor α to ablate the Th2 response with an Antibody-Dependant Cell Cytotoxic (ADCC) antibody, MEDI-563

Therapeutic antibody and ADCC

Safety profile, pharmacokinetics, and biological activity of MEDI-563, an anti-IL-5 receptor alpha antibody, in a phase I study of subjects with mild asthma.

Multifunctional actions of IL-13

Increased sputum and bronchial biopsy IL-13 expression in severe asthma.

Safety profile, pharmacokinetics, and biological activity of MEDI-563, an anti-IL-5 receptor alpha antibody, in a phase I study of subjects with mild asthma.

Biotherapeutics: targeting IL-13 and IL-4: a massive investment by industry

IL-4 and IL-13 receptor complex: a major therapeutic target in asthma

IL-4 and IL-13 receptor complex: a major therapeutic target in asthma

Mean decrease in serum IgE at 12 weeks with highest dose of AMG 317 from 556 to 282 IU/mL

Biotherapeutics: targeting IL-13 and IL-4: a massive investment by industry

AMG 317 (AMGEN)

AMA-636 (Wyeth)

TNK550 (Genentech)

E-139 (Merck & Novartis)/IL-13Ra1

DOM1000P

DOM0910

UCB

Candidate

Nurvanca (immunex)

Pitrakinra (Aerovance)

AMG 317 (AMGEN)

CAT-354 (Medimmune)

IMA-636 (Wyeth)

TNK550 (Genentech)

E-139 (Merck & Novartis)/IL-13Ra1

DOM1000P

DOM0910

UCB

Specificity

sIL-4R

IL-4Ra

IL-4Ra

IL-13

IL-13

IL-13

IL-13

IL-13

IL-4L/IL-13

IL-4L/IL-13

IL-4L/IL-13

Format

Discontinued

Preclinical I II III

IL-4

IL-4Rα

IL-4Ra

IL-13

IL-13

IL-13

IL-13

IL-13

IL-4Rα

IL-4L/IL-13

Pubmed: IL-13 publications up to 2010

All entries: 2968

Allergy: 1000

Asthma: 142

Animal/asthma: 417

Mouse/asthma: 347

Human: 66 (reviews 52)

Human sputum or biopsy: 6 (2 reviews)

Original research:

Inflammatory biomarkers in airways of patients with severe asthma compared with non-severe asthma.

McAuley P, Hew M, Torrego A, Jouneau S, Davis T, Durham A, Chung KF.

Immuno-regulatory cytokines in asthma: IL-13 and IL-4 in induced sputum.

Clin Exp Allergy. 2001 Sep;31(9):1441-8

Increased sputum and bronchial biopsy IL-13 expression in severe asthma.

Increased sputum and bronchial submucosal IL-13 expression in asthma and eosinophilic bronchitis.

Increased sputum and bronchial biopsy IL-13 expression in severe asthma.

McAuley P, Hew M, Torrego A, Jouneau S, Davis T, Durham A, Chung KF.

Increased sputum and bronchial biopsy IL-13 expression in severe asthma.

McAuley P, Hew M, Torrego A, Jouneau S, Davis T, Durham A, Chung KF.

Increased sputum and bronchial biopsy IL-13 expression in severe asthma.

McAuley P, Hew M, Torrego A, Jouneau S, Davis T, Durham A, Chung KF.

Increased sputum and bronchial biopsy IL-13 expression in severe asthma.

McAuley P, Hew M, Torrego A, Jouneau S, Davis T, Durham A, Chung KF.

Up-Regulation of IL-13 in human asthma

- Saha SK et al. Increased sputum & bronchial biopsy IL-13 expression in severe asthma. J Allergy Clin Immunol 2008;121:685-91

Th2-driven inflammation defines major subphenotypes of asthma

IL-13 inducible epithelial genes in airway epithelium

- Periostin
- CLCA1
- Serpin B2

Clinical features of asthma are present in patients with Th2-high and Th2-low asthma

Therapeutic targets in the allergic cascade that have so far failed to meet expectations in asthma clinical trials

- **Mediators:** histamine, prostaglandins (D2, F2a, TxA2), non-cysteinyl LTs (LTB4), tryptase, PAF, bradykinin, neuropeptides.
- **Cytokines:** IL-4, -5, -9, 13, TNFα.
- **Chemokines:** CCL3, eotaxin.
- **Adhesion molecules:** α4 (VCAM), ICAM-1, E selectin, P selectin.
- **Receptors:** CD4, CD23 (low affinity IgE receptor), CD25 (IL-2 receptor).

Stratified Medicine: What are we talking about?

"the tailoring of medical treatment to the individual characteristics of each patient ... involves the use of companion diagnostics to achieve the best outcomes in the management of a patient’s disease or disease predisposition. Preventive or therapeutic interventions can then be concentrated on those who will benefit, sparing expense and side effects for those who will not".

Adapted from: "Priorities for Personalized Medicine" by the US President’s Council of Advisors on Science and Technology (PCAST), 2008

- Personalised Medicine has arrived to an extent:
 - Herceptin®, Gleevec®, Selzentry™, Ziagen®, Vectibix®, Iressa™
Toward Precision Medicine

Building a Knowledge Network for Biomedical Research and New System of Health

Medicine will move from a reactive to a proactive discipline over the next decade; one that is predictive, personalised, preventive and participatory.

The promise of personalised medicine

- More effective medicines
- Safer medicines
- Cheaper medicines
- Better healthcare
- Cheaper healthcare
- Less (rather than more) healthcare disparity

SARP Clinical Cluster Analysis

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster 1</td>
<td>Mild Allergic Asthma
Early onset; atopic; normal lung function; ≤ 2 controller medications; minimal health care utilization; minimal sputum eosinophilia</td>
</tr>
<tr>
<td>Cluster 2</td>
<td>Mild-Moderate Allergic Asthma
Most common cluster; early onset; atopic; baseline FEV1 but reversible to normal; ≤ 2 controller medications; low health care utilization; infrequent need for oral corticosteroids; minimal sputum eosinophilia</td>
</tr>
<tr>
<td>Cluster 3</td>
<td>More Severe Older Onset Asthma
Older; very late onset; higher BMI (obese); less atopic; slightly decreased FEV1 with some reversibility; frequent need for oral corticosteroids; despite ≤ 3 controller medications including high doses of inhaled corticosteroids; minimal sputum eosinophilia</td>
</tr>
<tr>
<td>Cluster 4</td>
<td>Severe Variable Allergic Asthma
Older; atopic; severely decreased FEV1, but very reversible to near normal; high frequency of symptoms and advanced use; “variable” with need for frequent oral corticosteroids; high health care utilization; minimal sputum eosinophilia</td>
</tr>
<tr>
<td>Cluster 5</td>
<td>Severe Fixed Airflow Asthma
Older; longest duration; less atopic; severely decreased FEV1 with low reversibility (COPD similarities); high frequency of symptoms and advanced use; “fixed” with need for high doses of oral corticosteroids; high health care utilization; severe sputum eosinophilia and neutrophilia</td>
</tr>
</tbody>
</table>

Asthma Cluster Analysis: 5 Clusters

1. **Mild Allergic Asthma**
Early onset asthma (EOA); Normal lung function; atopic; ≤ 2 Controllers (medications used); Minimal Health Care Utilization (HCU); decreased sputum eosinophils (Eos)

2. **Mild-Moderate Allergic Asthma**
Most common cluster; EOA; Baseline normal FEV1 but reverses to normal; atopic; < 2 Controllers; Very low HCU, but some oral steroid use (HCU); ≤ decreased Eos)

3. **Severe Variable Allergic Asthma**
EOA, EOA; Severe decreased FEV1, but very reversible to near normal; Atopic (EOA); “Variable” with need for frequent HCU; High beta agonist use; EOA and global symptoms; High HCU and global symptoms (HCU); Increased Eos)

4. **Severe Fixed Airflow Asthma**
EOA; EOA; Severe decreased FEV1; Very atopic; High HCU; Atopic; Minimal health care utilization; High health care utilization; High sputum eosinophils and neutrophilia

Asthma Cluster Analysis: 5 Clusters

3. **More Severe Older Onset Asthma**
Older; Late onset (EOA); Higher BMI; Less atopic; Moderately low FEV1 with some reversibility; ≤ 2 Controllers (< 1 Deson); Higher HCU; More OCS; More OCS; Higher BMI; Increased HCU, Beta use and OCS; Increased Eos, EDI

5. **Severe Fixed Airflow Asthma (“COPD similarities”)**
Older; Longest duration; 65% female; Less atopic; Severely decreased FEV1 less reversibility; > 3 OCS; Higher BMI; more GAMS (H); High HCU, Beta use and OCS; Increased Eos, EDI

Relationship of Guideline Asthma Severity Classification and Cluster Assignment (Clusters 1-5)

Endotyping asthma: new insights into key pathogenic mechanisms in a complex, heterogeneous disease.

Anderson GP. Lancet 2008; 372: 1107-19

Creation of a New Taxonomy first requires an “Information Commons” in which data on large populations of patients become broadly available for research use and a “Knowledge Network” that adds value to these data by highlighting their inter-connectedness and integrating them with evolving knowledge of fundamental biological processes.

The plummeting cost of complete genome sequencing

Towards the $1000 genome

Development of a ‘stratified/ personalised’ medicine

‘Aspirational Goal’