
INSECT IMMUNOTHERAPY

2012 WAO International Scientific Conference

Richard W. Weber, M.D. National Jewish Health Denver, Colorado

Source	Allergen	Mol Wt (kD)	Function
Honey bee	Api m 1	16	Phospholipase A2
(Apis mellifera)	Api m 2	44	Hyaluronidase
	Api m 4	3	Mellitin
	Api m 6	7-8	
Bumble bee	Bom p 1	16	Phospholipase
Bombus pennsylvanicus)	Bom p 4		Protease
Vespids	Group 1	34-35	Phospholipase A1
Dolichovespula spp,	Group 2	44	Hyaluronidase
Vespa spp, Vespula spp,	Pol d 4	32-34	Serine protease
Polistes spp)	Group 5	23	Antigen 5
Fire ant	Sol i 2	13	
(Solenopsis invicta)	Sol i 3	24	
	Sol i 4	13	
Australian jumper ant	Myr p 1		
(Myrmecia pilosula)	Myrp 2		

Venom immunotherapy for preventing allergic reactions to insect stings. Boyle RJ et al Cochrane Database Syst Rev 2012 Oct 17;10:CD008838.doi:10.1002

- Search Methods: numerous literature & research databases, abstracts. Selection criteria: RCT of venom immunotherapy using standardized venom
- Main Results:
 - 6 RCT & 1 quasi-randomized CT; 392 total subjects
 - Bias risk due to non-blinding of outcome assessors
 - Interventions bee, wasp, ant; 1 SLIT, 6 SCIT
 - 3/113 VIT systemic reaction subsequent sting vs 37/93 untreated = RR 0.10 (C.I. 0.03-0.28); 112 decreased large local reaction RR 0.41 (C.I. 0.24-0.69)
 - 11 observational studies: systemic rxs to VIT 131/921 (14.2%) bee venom; 8/289 (2.8%) wasp venom

Safety of hymenoptera venom immunotherapy: a systematic review. Incorvaia C et al Expert Opin Pharmacother 2011;12:2527-32

- Systematic review aqueous and depot vespid and honeybee venom extracts
- Incidence systemic reactions 25.5% honeybee venom & 5.8% vespid venom (p<0.0001)
- No significant differences between aqueous & depot extracts

Report from the Hymenoptera Committee of Spanish Society of Allergology and Clinical Immunology: Immunotherapy with bumblebee Venom. Cruz S et al J Investig Allergol Clin Immunol 2012;22:377-8

- Bumblebee stings primarily occupational hazard
- Little cross-reactivity to honeybee venom; poor response to honeybee VIT
- Bumblebee venom available in Spain from ALK-Abelló since 2005
- Recommendations: greenhouse workers experiencing systemic reaction to bumblebee sting need evaluation and treatment with bumblebee venom

Negative venom skin test results in patients with histories of systemic reaction to a sting. Golden et al: JACI 2003;112:495-8.

- New Recommendations of the Insect Committee
- Negative VST in (+) Hx may be more common than thought & not exclude presence of VS IgE
- VST & VS IgE may be complementary & need to be repeated
- (-) VST or in vitro assay is not guarantee of safety, & pts should be counseled about avoidance & emergent care
- Management of Hx (+) VST (-) pts requires clinical judgment & ongoing research

Insect sting anaphylaxis in patients without detectable serum venom-specific IgE. Clayton et al: Clin Allergy 1985;15:329-33

- >500 patients with systemic reactions to insect sting, IDST & VS IgE (RAST)
- 25 had (-) VS IgE; 22 evaluated within 1 year, 15 within 6 months
- ID VST: 11 (-), 7 (1+), 2 (2+), 4 (3+), 1 (4+)
- SXS: hives/angioedema 20, shock & hypotension 3, respiratory 6, GI 1

Indications for Venom Immunotherapy

Sting Reaction	(+) ST or sIgE	(-) ST or sIgE	
Systemic	Yes	No (judgement required)	
Cutaneous NLT			
Adult	Yes	No	
Child (≤16 years)	Not required	No	
Large local	No	No	
Absence of history	No (?)	No	

Rush Hymenoptera immunotherapy: A safe and practical protocol for high-risk patients. Sturm et al: J Allergy Clin Immunol 2002;110:928-33

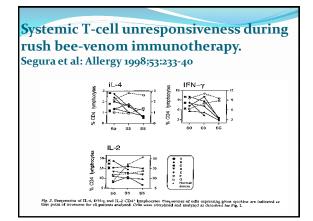
- 101 Hymenoptera allergic pts with 4-day Rush IT: 1st 0.001, .01, .1, .2, .4; 2nd .8, 1, 2, 4, 6; 3rd 8, 10, 20, 40, 60; 4th 80, 100mcg
- Pretreated with IV H₁ antihistamine
- 52 honey bee venom, 49 yellow jacket venom
- 100 pts reached maintenance dose
- 8 systemic reactions (0.47% all injections) in 7 pts
- HBV SR 12%, YJV 2%

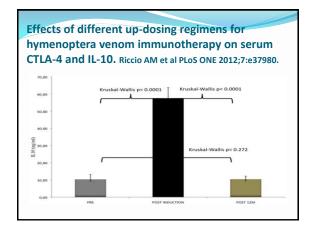
Safety and efficacy of a 12-week maintenance interval in patients treated with Hymenoptera venom immunotherapy. Kochuyt, Stevens: Clin Exp Allergy 1994;24:35

- Methods
 - 5 day rush IT with 100µg maintenance dose
 - interval between injections progressively increased by 1 week increments until 12 week interval achieved after ~19 months
 - field re-stings monitored

Safety and efficacy of a 12-week maintenance interval in patients treated with Hymenoptera venom immunotherapy. Kochuyt, Stevens: Clin Exp Allergy 1994;24:35

- Results
 - 12 week interval achieved in 117/128 (91%) YJV & 35/50 (70%) HBV patients
 - 152 Rx'd ~2yrs without VIT reactions
 - 48 YJV restung 77x without systemic reaction
 - 17 HBV restung >213x with 1 large local & 1 mild systemic reaction


Systemic T-cell unresponsiveness during rush bee-venom immunotherapy. Segura et al: Allergy 1998;53:233-40

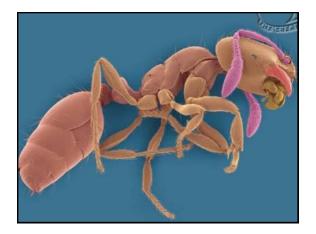

Methods

- Rush IT in 7 patients with bee venom sensitivity
- PBMC depleted of phospholipase A₂ binding cells (specific B-cells & basophils)
- stimulated with PMA & analysed for CD69, CD45RO+, IL-2, IL-4, & IFN- γ production
- cells studied @ day o, day 3, & day 5 of IT

Systemic T-cell unresponsiveness during rush bee-venom immunotherapy. Segura et al: Allergy 1998;53:233-40

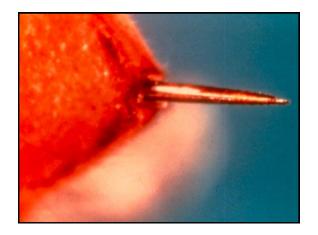
- Results
- reduced levels of CD69, IL-4, & IFN-γ compared to normal donors
- progressive reduction during IT
- no change in IL-2
- cells from atopics showed greater degree of IL-4 & IFN-γ expressing cells among CD45RO⁻T-cells than normals

Discontinuing venom immunotherapy: Outcome after five years.


Golden et al: JACI 1996;97:579-87

- Methods
 - volunteers stopped VIT after 5 yrs maintenance
 - sting challenges, ST & IgE q1-2yrs after d/c VIT
- Results
- systemic reactions occurred in 8/270 stings, or 7/74 patients; only 2 clinically significant
- venom ST negative in 28% after 5 yrs VIT; negative in 56-67% of patients 2-4yrs after stopping VIT with parallel decrease in venom-specific IgE

Discontinuing venom immunotherapy: Outcome after five years.


Golden et al: JACI 1996;97:579-87

- Results (con't)
 - challenge stings did not prevent decline in sensitivity, nor increase risk of reaction even with stings 1 month apart
- Conclusions
 - venom IT can be safely stopped after 5 years of maintenance in virtually all patients (? except for those with unchanged sensitivity?)
 - venom sensitivity decreases with time, & stings do not cause resensitization
 - late onset, non-IgG long-term suppression

Imported fire ant immunotherapy: Effectiveness of whole body extracts. Freeman TM et al JACI 1992;90:210-5

- Retrospective review 65 IFA sensitive patients on IFA-WBE & 11 sensitive patients not treated
- 47 IT patients had 112 field stings, 1 systemic (2.1%)
- 6/11 non-IT patients had field stings, all had systemic reactions
- Sting challenge in 30, local reactions only
- ST negative in 26/31 IT patients, lesser in 5
- ST unchanged in 4 non-IT patients

