Pharmacogenomics

Treating the Individual Asthma Patient

Elliot Israel, M.D. Professor of Medicine Harvard Medical School Brigham & Women's Hospital Partners' Asthma Center

Too much of a good thing?

- 27 yo male with severe asthma with multiple hospitalizations
- Unable to reduce prednisone below 15 mg/d
- Uses nebulized and MDI beta-agonists 10-12 times a day
- Unable to tolerate inhaled corticosteroids because they make him wheeze
- Not working and rarely leaving the house

- On exam: Morbidly obese with scattered wheezes
- FEV1 70% predicted
- 7% eosinophils
- · Sinus CT mucosal thickening
- pH probe mild reflux

- Switched to high dose ipratropium bromide (anticholinergic) and montelukast (leukotriene antagonist)
- · Beta-agonists tapered
- · 3 months later
 - Able to tolerate ICS
 - Off oral prednisone
- No hospitalizations in last 8 years

OUTLINE

GOAL: Bring you up to date on techniques that are allowing us to specify particular medications for individual patients

- Define pharmacogenomics and techniques
- Review developments in pharmacogenomics as they relate to use of beta agonists, leukotriene modifiers, and corticosteroids
- Review how we will use this information for treatment decisions in the future

PHARMACOGENOMICS

Study of how genetic differences influence the variability in patients' responses (therapeutic and adverse) to drugs

 - 50-60% of genetic variability associates with variability in therapeutic responses

What Polymorphisms Do We Look For?

- SNPs- <u>Single Nucleotide Polymorphisms eg Guanine</u> to Cytosine
- Insertions-additional gene sequences
 CNVs- Copy Number Variants
 - Change in the number of repeats of a sequence
- Deletions-removal of a nucleotide or nucleotides
- Genomic/Non-Genomic
 - Genomic- in areas of the gene that are know to code for or regulate a gene
- Macro-level Race

How Do We Look?

- Candidate Gene and Pathway Approaches
- GWAS
- Expression profiling in cells of responsive and non-responsive individuals

How Do We Confirm?

- Prospective studies
 - Labor-intensive
 - Less subject to confounding
- Association studies
 - Require large numbers
 - Allow easy replication in multiple populations

Beta-Agonists

Treatment Failures in Subjects Taking LABA's Across ACRN

Table 1. LABA added to ICS are not as							
effective in Blacks: Effect of LABA Added on							
to ICS in Blacks vs. mixed populations							
	Blacks	Blacks	Blacks	Mixed	Mixed	Mixed	

		Blacks Bailey 08	BIACKS Spector 11	Blacks Brown 12	MIXEO Shapiro 09	INIXED Ind 03	MIXEO Kavuru 00	
[N	239	311	742	84	160	92	
-	Duration	12 mo	3 mo	12 mo	3 mo	6 mo	3 mo	
	ICS dose (mcg/day)	200	640	640	500	500	200	
	Δ FEV1 L (Δ%)	0.11 (3%)		0.09 (4%)	0.23 (10%)	-	0.23 (10%)	
	ΔAM PEF L/min	16	18	10	38	25	35	
	∆ Rescue puffs/d	0.2 (ns)	.6		1.4	-	1.5	
	∆% Sx free days	1.9 (ns)		1.9 (ns)	18.4	21	15.4	

Conclusions

- Arg16Arg polymorphism identifies patients who may not do as well with regular beta-agonists
 - It may identify Blacks who do less well with LABAs
- Blacks may not realize as much benefit from LABAs as Caucasians

Leukotriene Modifiers

23

Influence of LT Pathway Polymorphisms on Asthma Exacerbation Risk

Genotype	Frequency (n)	Odds Ratio (95% Cl)	P Value
5/5	0.64 (37)	1.0	0.045
5/X	0.36 (21)	0.27 (0.08, 0.97)	
AA	0.49 (28)	1.0	0.021
AG	0.44 (25)	4.0 (1.23, 12.99)	0.133
GG	0.08 (5)	4.5 (0.63, 31.95)	
AA	0.51 (30)	1.0	0.023
AC	0.38 (22)	0.24 (0.07, 0.83)	0.106
CC	0.11 (6)	0.16 (0.02, 1.49)	
	Genotype 5/5 5/X AA AG GG AA AC CC	Frequency S/S 0.64 (37) 5/X 0.36 (21) AA 0.49 (28) AG 0.44 (25) GG 0.08 (5) AA 0.51 (30) AC 0.38 (22) CC 0.11 (6)	Genotype Fequency (n) Odds Ratio (95% cl) 5/5 0.64 (37) 1.0 5/X 0.36 (21) 0.27 (0.08, 0.97) AA 0.49 (28) 1.0 AG 0.49 (28) 4.0 (1.23, 12.99) GG 0.08 (5) 4.5 (0.63, 31.95) AA 0.51 (30) 1.0 AA 0.51 (30) 1.0 AA 0.51 (30) 0.24 (0.07, 0.83) AC 0.38 (22) 0.24 (0.07, 0.83) AC 0.31 (6) 0.16 (0.02, 1.49)

Additional Associations with Corticosteroid Responses

- TBX21 encodes the transcription factor Tbet (induction of Th1 and suppression of Th2)
 - associated with large improvement in airway hyperresponsiveness in response to corticosteroid therapy. (Tantisira PNAS 2004 and Ye J Clin Pharm Ther. 2009)
 - Only 5% frequency
- Adenyl Cyclase 9 (AC9) -activated by ADRB2
 - SNP associated with improved bronchodilator response with ICS (Tantisira, Hum Mol Genet. 2005 and Kim, J Clin Pharm Ther. 2011)

Biologics

- No polymorphisms that associate with altered responses
- However there are polymorphisms that associate with the biology
 - FCER1 gene polymorphisms and IgE levels (Palmer, Cin Exp All 1999)
 - IL6R polymorphisms and ciruculating IL6R (Bleecker, JACI, 2012)

Additional Methods to Discover Candidate Genes

- In vitro expression profiling of cells from responsive and non-responsive populations
 - NFKB transcription factor activating transcription of cytokines, chemokines, growth factors, cellular ligands, and adhesion molecules associated with asthma (Chapman Mol Cell Endocrinol. 1995)
 - FK506 binding protein 51 gene (FKBP51) in bronchial epithelium (Woodruff PNAS 2007)

Conclusions

 Genetic polymorphisms do associate with differential responses to asthma medications

Potential Applicationns

- Predict responders
- Predict those with increased tendency for adverse effects
- Individualize dosing
- Allow introduction of medications that have effects in a predictable population

What prevents us from using this information now?

 Repeatable cross-sectional and prospective studies in <u>multiple</u> populations that will put the associations on a firm foundation of data

WHY?

- Gene-gene interactions
 - May modify associations so that they may differ significantly among different populations and ethnic groups
- Gene-environment interactions
 - May result in differences among populations and ethnic groups

SUMMARY

- While we have not yet reached the level of specificity seen in cystic fibrosis, where a drug is targeted to one specific polymorphism, we are beginning to identify patterns of genetic change which will predict responses (or adverse effects) to asthma medications.
- Combining multiple studies in multiple populations with informatics for physicians will allow us to bring this information to the practice setting

