Small Airway Disease in Asthma: Pathophysiology and Assessment

National Jewish Health University of Colorado Health Sciences Center

Rohit Katial, MD, FACAAI, FACP Professor of Medicine Program Director, Allergy & Immunology Director, Weinberg Clinical Research Unit Director A/I Clinical Services

Small Airways How are they defined?

- * Anatomically by lack of cartilage in airway wall
- * Physiologically by size of catheter used to measure "peripheral airway" resistance
- Distal, peripheral or small airways probably reflect generations 7-19 with diameters of 0.5-2mm (terminal bronchioles, respiratory bronchioles and alveolar ducts)

Small Airways in Asthma

- Distal, peripheral or small airways probably reflect generations 7-19 with diameters of 0.5-2mm (terminal bronchioles, respiratory bronchioles and alveolar ducts)
- Physiologically this probably reflects the transition point from turbulent to laminar flow
 - For a given small airway generation the cross sectional area is larger than for a large airway generation. If flow is the same through both generations, linear velocity should be less for small airways. Reynolds number predicts laminar flow with low laminar velocity.

Histologic Section* of Intrapulmonary Bronchi Normal Subject Without Asthma

*original magnification x 180 Bousquet et al. AJRCCM 2000:16(5)1720

Histologic Section* of Intrapulmonary Bronchi Fatal Asthma

Small Airways in Asthma

- * How are they assessed?
 - Impulse oscillometry
 - Multiple breath nitrogen washout
 - Imaging
 - Inflammatory markers (systemic, expectorated, alveolar FeNO)
 - FEF_{25-75%}
 - Airtrapping (RV, IC, SBN2 for CV/CC)
 Aerosol bolus dispersion

Clinical: Impulse Oscillometry

- * 38 ICS naïve asthma patients with mild-tomoderate disease treated with either Qvar (400 mcg/day, n=26) or CFC BDP (800 mcg/day, n=12) for 12 weeks in open label fashion
 - Yamaguchi et al Pul Pharm Ther 2009 (e-pub)

Clinical: Impulse Oscillometry

Imaging as a Possible Modality to Measure Small Airway function

CT & Alveolar Nitric Oxide and Small Airways

- * 16 mild-to-moderate asthma (FEV1 62–120%)
- 5 weeks' treatment placebo or 320 mg ciclesonide daily
- * Assessed: mean FeF 25-75%, % fall in FVC at provocative dose of AMP and MCh, expiratory lung volume on CT after MCh challenge, single-breath nitrogen closing volume and alveolar exhaled nitric oxide (eNO).

Cohen et al. Eur R J 2008;31:1213

CT & Alveolar Nitric Oxide and Small Airways

	Placebo		Ciclesonide	
	Baseline	Post-treatment	Baseline	Post-treatment
Subjects n	7		9	
Alveolar eNO ppb	14.7 (8.5-39.2)	16.5 (5.6-39.6)	17.3 (6.9-67.3)	8.5 (3.7-12.5)*.1
FEF25-75% % pred	63 (34-87)	61 (54-86)	52 (29-66)	63 (30-97)*
Closing volume SBN ₂ mL	140 (95-495)	105 (60-430)	230 (60-820)	115 (35-975)
AFVC % at PC20 of MCh	13.6 (4.9-15.3)	13.2 (2.5-19.4)	12.4 (6.1-16.8)	12.7 (5.6-19.7)
AFVC % at PC20 of AMP	12.2 (5.4-14.3)	14.1 (9.0-18.9)	12.0 (3.5-17.2)	12.3 (4.1-15.9)
Total expiratory lung volume	2993 (2158-4636)	2973 (2368-4916)	4165 (2262-5576)	3831 (2338-5166)*
on CT after MCh mL				

Cohen et al. Eur R J 2008;31:1213

Cohen et al. Eur R J 2008;31:1213

ICS Therapy: Small vs Large Particles?

- Practical significance
 - Increased total lung deposition with more peripheral lung deposition and less oropharyngeal deposition
- Biologic significance More effective topical anti-inflammatory effect both centrally and peripherally
 Clinical significance

 - To be discussed at follow up pro/con

Conclusions

- The distal lung appears to contribute to asthma pathogenesis and has physiologic consequences
- * There are data to suggest that remodeling also occurs in the distal lung
- * Should the distal lung be considered a therapeutic target