December 8, 2012 Update on Anticytokines

Lanny J. Rosenwasser, M.D. Dee Lyons/Missouri Endowed Chair in Immunology Research

> Professor of Pediatrics Allergy-Immunology Division Childrens Mercy Hospital Kansas City, Missouri

Professor of Pediatrics, Medicine and Basic Science University of Missouri Kansas City School of Medicine

Disclosure Statement Lanny J. Rosenwasser, MD

- RESEARCH STUDIES
 Genentech, Novartis, National Institutes of Health
- CONSULTANT A-Z, Genentech, Novartis, Regeneron, Sanofi-Aventis
- SPEAKERS' BUREAU Alcon, A-Z, Genentech, Novartis

Learning Objectives

- Understand the concept of biotherapeutics
- Understand the application of biotherapeutics to allergic disease and asthma
- Review current preliminary studies of potential biotherapeutics in asthma
- Understand complex cascades of allergy/asthma pathogenesis and implications for biotherapeutics

Biotherapeutics

A field encompassing materials, usually proteins, produced by biological means including recombinant DNA technology. The agents and agonists/antagonists for treatment are usually biological.

Biotherapeutic Agents

- Monoclonal Antibodies cell surface receptors, ligands, microorganisms
- Cytokines
- Soluble Receptors
- Natural and Synthetic Antagonists
- SiRNA
 - Designer Modeled Small Molecules
 - Oligonucleotides
- Transcriptional Inhibitors

Biotherapeutic Targets in Immune Allergic Disorders, Anti-IgE

IL-1, TNF, IL-6 TLR, Adhesion Molecules IFN Modulation Chemokines

 Acquired ImmunityTargets

 Th₂, Th₁₇ Cytokines
 IL-2, 4,5,9,13,17,25,33

 Cellular
 DC, T, B

Other Targets

TSLP Adipokines Growth and Differentiation Factors

Characteristics of Asthma

- Narrowing of the airways
- Airway obstruction
- · Airway inflammation
- · Increased airway responsiveness

NHLBI, NAEPP, 1997.

Regulatory T Lymphocytes

CD4⁺, CD25⁺ T lymphocytes

- Regulatory
- Express TGFβ, IL-10
- Suppressive to other T cells
- Express Foxp3 transcription factor
- IL-35 growth factor

Complexity of Asthma

- Several orders of magnitude more complex
- Microbiome, Proteome, Transcriptome, Genome
- Tissues, Organs, Whole Body, Brain
- Third and Fourth Dimensions

Stepwise Approach for Managing <u>Asthma</u> Persistent Asthma: Daily Medication Consult value and page 1 carbor of right and regulated. Consult value and value 3 carbor of right and regulated.						
Step 1 Preferred: SABA PRN	Step 2 Preferred: Low-dose ICS (A) Alternative: Cromolyn (A), LTRA(A), Naccercontil (A), or Thacohylline (B)	Step 3 Proferrad: Low-dose ICS + LABA (A) OR Medium-dose ICS (A) Afticmative Low-dose ICS + sither_TTA (A), Theophylina (B), or (Zievina (D))	Step 4 Proferred: Medium-dose ICS + LABA (B) Alternative: Modium-tose USA (B) Alternative: Modium-tose LITA(B), Theophylline (B), or Zilaston(D)	Step 5 Preferred: High-dose ICS + LABA (B) AND Consider Omaizumab for Patients Who Have Allergies (B)	Step 6 Preferred: High-dose ICS + LABA + Oral Conticosteroid AND Consider Omalizumab for Patients Who Have Allergies	Stap Up If Needed (first, check adherence, anvironmantal control, and control, and control, and control Assess Control Stap Down If
Steps 2-4. C Quick-Relief M • SABA as needs 20-minute interv • Use of SABA >0 and the need to ICS = interd concession Adopted from National Am	Patient education on stear subcutants edication for AII F 2 for symptoms, bits caps a weak for sy stap up freatmant is LABA togeting Sugar me Eduction and Prevence trans Service. Available at	ous allargen imm Patients ansity of traatmant it course of system mptom railef (not p rest, LTRA - submans re Program, Experimental	unoltierapy for pai dependeron severit to oral controsterol prevention of EIB) g septerational.	tients who have a y of symptoms: up its may be needed enerally indicates in processed Management of	Ilergio astirma to 3 treatments at radequate control Aurora (EPR-3 2007), U.S.	Possible (and asitma is well controlled at least 8 months)

Emerging Biotherapeutics

Anti IgE

- Targets IgE, FCeRI
- Rhu Mab E25 Omalizumab, Xolair
- Reduces Free IgE (allergen specific)
- Reduces Eos (sputum, BAL, blood)
- Reduces FCeRI and FCeRII
 expression
- Efficacy Asthma, AR

IL-1 and Allergy/Asthma

- IL-1 in a critical co-factor for Th2 and Th17 T cell activation in vivo and in vitro for Humans and Mice
- Airway and tissue involvement n asthma and allergy

Adherent Cell Function in Murine T-Lymphocyte Antigen Recognition. IV. Enhancement of Muriine T-Cell Antigen Recognition by Human Leukot Pyrogen. Rosenwasser, Lanny J. Dinarello, Charles A. Rosenthal Alan S.

Detection of Alveolar Macrophage-Derived IL-§ in Asthma¹ Inhibition with Corticosteroids. Boriah, Larry, Mascal James J. Dishuck, John. Beam, Martin , Richard J. Rosenwasser, Lanny J. The American Association of Immunolo Vol 143, 3075-8027: NO 9. November 1, 1992.

IL-1 acts directly on CD4 T cells to enhance their antigen-driven expansion and Differentiation. Shlomo , Z. Sasson, Ben. Hu-Li, Jane. Quiel, Juan. Cauchetaux, Stephane. Ratner, Maya. Shapira, Hana. Dinarello, Charles A. Paul, William E. PMAS April 28, 2009 Vol. 106 No. 17. 7119-7124

Cytokine . IL-1 acts on T cells to enhance the magnitude of in vivo immun Responses. S.Z. Sasson-Ben. Caucheteux, Stephanie. Grank, Michelle. Jane, Hu-Li. Paul, William. Elsevier Ltd. 56 (2011) 122-125

r IL-1β. Zielinski, Christina E. Mele , Federico. Aschenbrenner, Dominik, Jarrossay, David, Jarrossay, Francesca, Rono

Extended IL-1 Family

- (Caspase 3 Dependent)
- IL-18 shared receptor and genetics (IL-18bp)
- IL-32 TNF inducer

Anti-IL-I Anti-IL-5 Anti-IL-17 Anti-IL-13

- IL-33 Ligand for ST2 Induces TH2 Cytokines
- IL-37 Downregulation of IL-1 family activities

IL-1 family members - Chr. 2q13

New Name	Other Name	Property
IL-1F1	IL-1a	Agonist
IL-1F2	IL-1β	Agonist
IL-1F3	IL-1Ra	Receptor antagonist
IL-1F4	IL-18	Agonist
IL-1F5	FIL1ð	Anti-inflammatory
IL-1F6	FIL-1s	Agonist
IL-1F7	IL-37	Anti-inflammatory
IL-1F8	IL-1H2	Agonist
IL-1F9	IL-1e	Agonist
IL-1F10	IL1HY2	Receptor antagonist
IL-1F11	IL-33	Agonist

Gene	Cytokine
IL1F5	IL-36 Ra
IL-1F6	IL-36
1F8	IL-36
1F9	IL-36
IL-1F7	IL-37
IL-1F10	IL-38

Successful IL-1 targeted therapy

- · Gout acute and chronic
- Pseudogout
- Type 2 Diabetes
- Post MI remodeling
- · Systemic onset juvenile idiopathic arthritis (Still's)
- Adult onset Still's disease
- Schnitzler's Disease

Potential disease targets for IL-1 directed therapy

- Neutrophilic urticaria - Chronic urticaria
- Neutrophilic lung disorders - COPD

 - Neutrophilic asthma - Acute Chest syndrome
- Neutrophilic CNS disease - Acute Hemorrhagic Leukoencephalitis

Rilonacept **IL-1 TRAP**

- Rilonacept: a dimeric fusion protein (251 kDa) that is a specific blocker of IL-1 incorporating components required for IL-1 signalling - IL-1 receptor subtype
- IL-1 receptor accessory protein · Prolonged circulation half-life in-vivo (8.6 days)
- Approved for CAPS in 4/08
- · Currently over 100 patients on therapy

IL-17 Family

- 20-30 кd
- IL-17A, IL-17F profibrotic activate chemokines (IL-8) and IL-6
- IL-17E IL-25
- IL-25 associated with eosinophilia, airways hyperresponsiveness
- · Genetics of IL-17 family linked to asthma

Allergy - 2030

- Systems Biology Approach to Allergic Cascades
- Bio Therapeutics
- Pharmacogenetic Profiling
- Early Intervention

