

Early Viral Infections: Their Role in the Development of Asthma

Nelson Rosário MD, PhD

Viral Infection Is a Common Cause of Wheezing Exacerbations in Children

- In a survey, viruses were detected in up to 85% of wheezing exacerbations, in particular:
 - Rhinovirus
 - Coronavirus
 - Influenza virus
 - Parainfluenza viruses
 - Respiratory syncytial virus (RSV)
- Seasonal correlations between rates of upper respiratory infections (URIs) and hospital admissions for asthma

Healthy Infant

Asthmatic

Lung function

Tobacco

INF response

Fam. Hx.

Parainfluenza

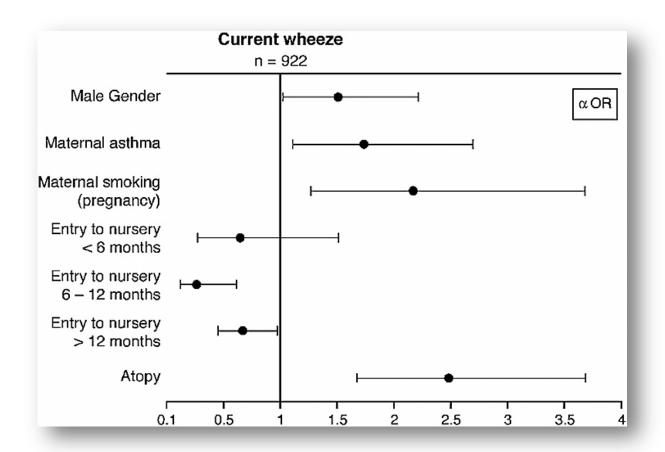
RSV

RV

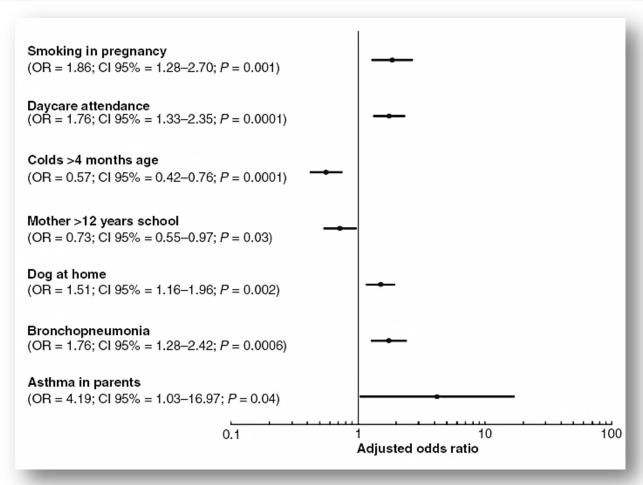
Atopy
Pollutants
Allergen expos.
Lung function

Rhinovírus Influenza other

Wheezing


Exacerbation

Resolution


Adjusted odds ratios (95% CI) for factors independently related to current wheeze using logistic regression.

Population-based birth cohort; at age 5 years.

Current wheeze: 22% 28% were sensitized

Protection and Risk Factors for Recurrent Wheezing in Infancy

written questionnaire N= 3003

Human rhinovirus associated wheezing during the first and second year of life and asthma risk at 5–7 years of age

First author, year	Setting	Age (months)	Index group	Comparator group	Asthma risk at age 5–7 years OR (95% CI)	Adjustment
Kotaniemi-Syrjänen, 2003 (9)	Inpatients, non-selected population	<24	HRV+ wh+, n = 20*	HRV-, wh+, n = 43	4.1 (1.0–17)	No†
Kusel, 2007 (41)	Outpatients, birth cohort at atopy risk	<12	HRV+ wh+, n = 34	LRI+ wh-, n = 193	3.2 (1.1–9.5)	Atopy
Jackson, 2008 (55)	Outpatients, birth cohort at atopy risk	<12	HRV+ wh+, n = 45	HRV+ wh - , n = 214	2.7 (1.4–5.3)	No‡
		12–23	HRV+ wh+, n = 37			No‡

^{*}Single infections.

Independent of age, sex, and atopic dermatitis.

Independent of aeroallergen sensitization

Increasing strength of clinical evidence to support increased susceptibility to infection

Association between asthma and viral infections

Up to 85% of asthma exacerbations in children are due to viral URI 3

RSV and RV bronchiolitis in infancy associated with increased risk of asthma 1 Frequency and severity of respiratory infections

Higher rates of influenza attributable morbidity and CAP 7-13

More frequent and more severe LRTI 5

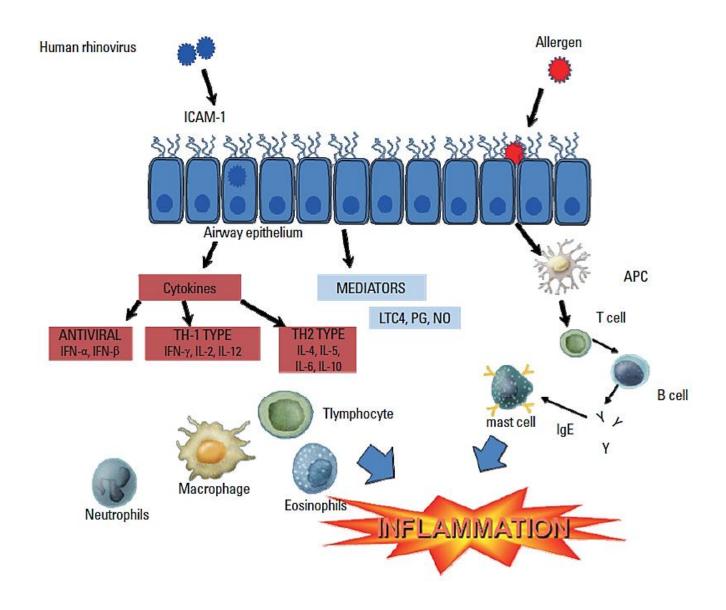
More severe infant bronchiolitis associated with higher risk of asthma development 2 Susceptibility to infections outside of the respiratory tract

Increased rates of otitis media and gastroenteritis in infancy 16-18

Delayed clearance of viral skin infections 21

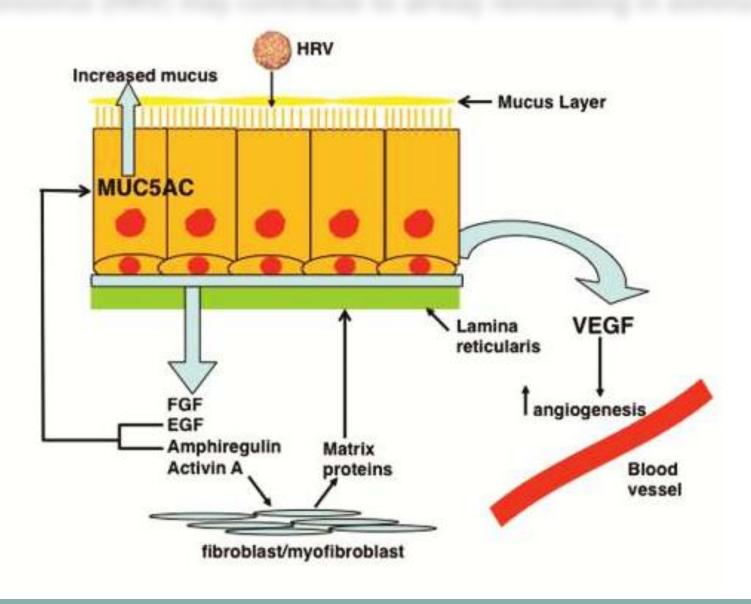
Colonization and infection latency

Higher rates of latent infections 26-33


Bacterial colonization of the airways at 1 month of age associated with asthma at age 5 years 22 Invasive infections

Increased risk of invasive pneumococcal disease 45-48

Higher incidence of rhinoviremia 44


Human Rhinovirus

- Enhances epithelial cell cytotoxicity.
- Induces mucin production.
- Delays epithelial repair.
- Induces cytokine and chemokine release to recruit secondary effector cells.
- Promotes the production of growth factors.
- Atopy enhances the clinical effect of HRV and both prolong and enhance airway hyperresponsiveness

Kim & Gern Allergy Asthma Immunol Res. 2012;4:116-21.

Human Rhinovirus (HRV) may contribute to airway remodeling in asthma

Factors linked to severe HRV infections

Host characteristics	Immunologic	Environment and lifestyle
Chronic lung diseases Asthma COPD Cystic fibrosis	Low interferon responses IFN-α IFN-β IFN-γ IFN-λ	Tobacco smoke Pollutants (NO ₂)
Age Preschool children Elderly Genetics Gender (young boys)	Allergy Eosinophilia Epithelial integrity Immune compromise	Diet Vitamin D Probiotics Stress Day care attendance

Modified asthma predictive index	Original asthma predictive index	
Major criteria	Major criteria	
Parental history of asthma	Parental history of asthma	
MD-diagnosed atopic dermatitis	MD-diagnosed atopic dermatitis	
Allergic sensitization to at least one aeroallergen		
Minor criteria	Minor criteria	
Allergic sensitization to milk, egg, or peanuts	MD-diagnosed allergic rhinitis	
Wheezing unrelated to colds	Wheezing unrelated to colds	
Blood eosinophils ≥4%	Blood eosinophils ≥4%	

Hx of ≥ 4 wheezing episodes with at least one physician diagnosed.

In addition, at least one of the major conditions or at least two of the minor conditions.

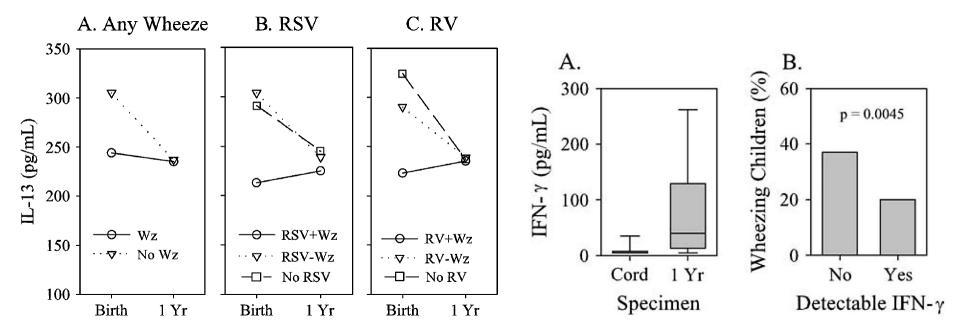
Community-based cohort of 198 children at high atopic risk was followed from birth to 5 ys.

Childhood Asthma Study (CAS) Perth, Australia

- 815 episodes of acute respiratory illness(33% lower respiratory infections)
- Postnasal aspirates + in 69% (RV 48.3%; VSR 10.9%)
- Current wheeze at 5 ys.: 28.3%
- Association with LRTI: risk > 3X, specially if atopic < 2 years.

Predictors of current wheeze at 5 ys of age in relation to time of atopic sensitization

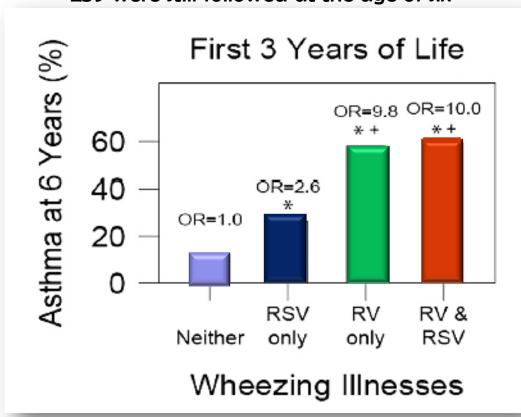
wLRI: Wheezy lower respiratory tract illness


Association between type of Acute Respiratory Illness caused by RSV and rhinovirus and type of wheeze

	Any ARI caused by RSV OR (95% CI) <i>P</i>	Any ARI caused by rhinovirus OR (95% CI) <i>P</i>	Nonwheezy LRI caused by RSV OR (95% CI) <i>P</i>	Nonwheezy LRI caused by rhinovirus OR (95% CI) <i>P</i>	Wheezy LRI caused by RSV OR (95% CI) <i>P</i>	Wheezy LRI caused by rhinovirus OR (95% CI) <i>P</i>
Current asthma	1.5 (0.7-3.2) 0.3	1.1 (0.6-3.2) 0.9	1.1 (0.4-2.9) 0.9	0.7 (0.4-1.3) 0.3	2.1 (0.5-8.1) 0.3	2.9 (1.2-7.1) 0.02
Transient wheeze	1.2 (0.6-2.3) 0.6	1.6 (0.6-3.9) 0.3	1.7 (0.8-4.0) 0.2	1.3 (0.8-1.9) 0.3	1.7 (0.4-6.3) 0.5	0.9 (0.4-2.2) 0.9
Late-onset wheeze	1.5 (0.6-4.1) 0.4	0.8 (0.3-2.9) 0.8	0.6 (0.1-2.8) 0.5	0.6 (0.2-1.5) 0.3	0.7 (0.1-7.0) 0.8	0.7 (0.1-3.2) 0.6
Persistent wheeze	1.1 (0.5-2.4) 0.7	0.8 (0.3-2.1) 0.6	1.1 (0.7-1.6) 0.8	1.1 (0.7-1.6) 0.8	2.7 (0.7-9.8) 0.04	2.9 (1.2-7.0) 0.02
Current wheeze	1.2 (0.6-2.4) 0.6	0.7 (0.3-1.8) 0.5	0.7 (0.3-1.7) 0.4	0.8 (0.5-1.2) 0.3	2.5 (1.0-11.3) 0.05	2.5 (1.1-5.9) 0.03

Transitório: episódios nos 3 primeiros anos; início tardio: entre 3-5anos; ativo: sibilos nos 12 meses; persistente: desde primeiros 3 até 5 anos

Immunologic risk factors for virus-induced wheezing

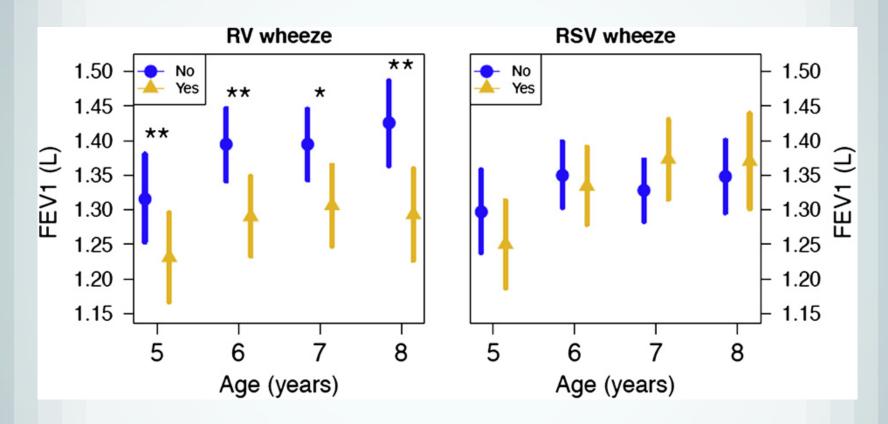

- 285 children with a parental hx of asthma and/or respiratory allergies.
- Mononuclear cells obtained at birth (umbilical cord blood) and at 1 year
- Incubated with phytohemagglutinin, RSV, or RV, and supernatants were analyzed for IL-5, IL-10, IL-13, and IFN-g.

The TH2 response, could have beneficial effects during viral respiratory infections. Low IL-13 and IFN-g production at birth are indicators of an immature immune system.

RV wheezing episodes are risk factors for asthma development

259 were still followed at the age of six

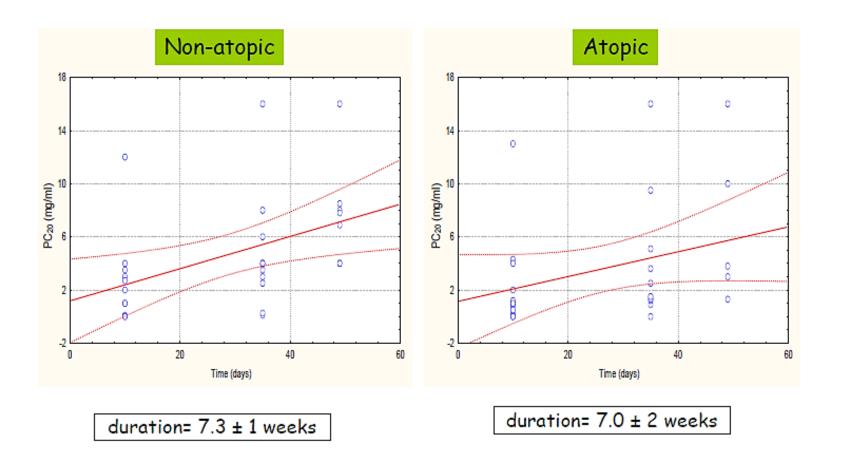
"Childhood Origin of ASThma (COAST) "


n=238; followed prospectively from birth to 8 ys. of age (1,3,6,8 ys); Parents with asthma and/or positive PST.

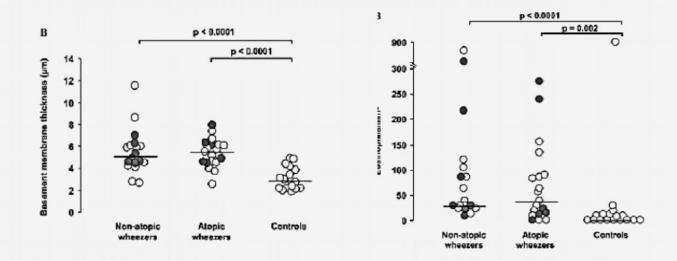
Viral respiratory infection: culture and RT-PCR in nasopharynx aspirates.

Spirometry and impulse oscillometry annually.

Specific IgE FEIA.


RV wheezing illnesses in early life are associated with a subsequent diagnosis of asthma and lower lung function in childhood.

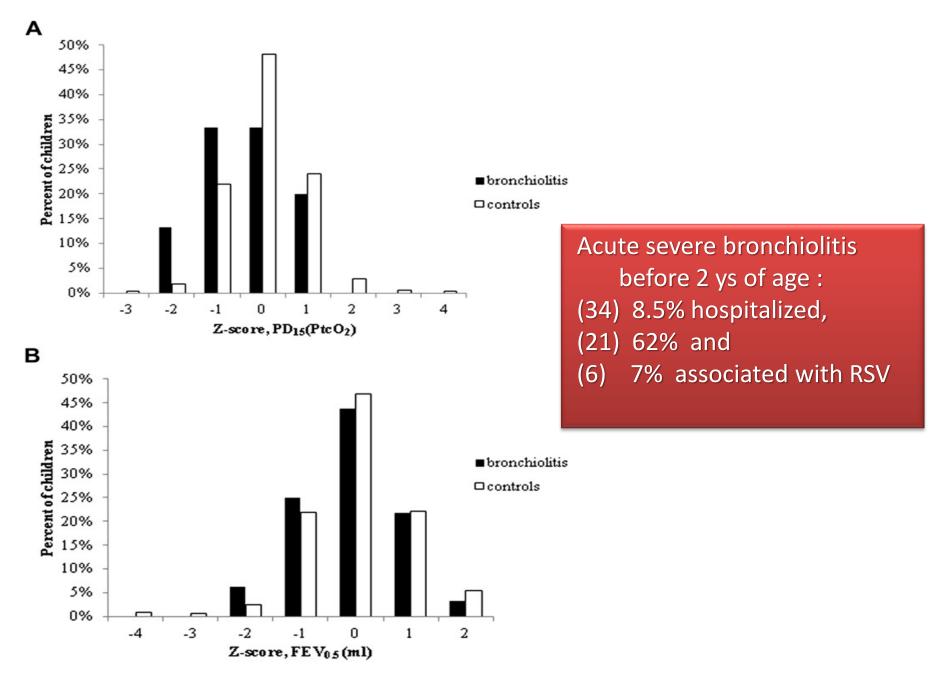
HRV wheezing illnesses in the first 3 years: greater risk for asthma at age 6 (OR=9.8) compared to infants who wheezed with RSV (OR=2.6)


- 630 infants with bronchiolitis or URIs.
- 162 (26%) had HRV infection.
- 35% had HRVA, 6% HRVB, and 30% had HRVC.
- 104 (64%) had HRV infection alone.
- Maternal and family history of atopy = more severe HRV-associated illness
- Maternal history of atopy/asthma = more severe HRV associated bronchiolitis (OR, 2.39 P < .02).

Duration of hyperreactivity after a single URTI

Non atopic wheezers have airway pathology comparable to asthma

Basement membrane thickening and eosinophils


Turato G, AJRCCM 2008:178;476

Neonatal bronchial hyperresponsiveness precedes acute severe viral bronchiolitis in infants

Bo L. K. Chawes, MD, PhD,^a* Porntiva Poorisrisak, MD, PhD,^a* Sebastian L. Johnston, MD, PhD,^b and Hans Bisgaard, MD, DMSc^a Copenhagen and Gentofte, Denmark, and London, United Kingdom

Bronchial responsiveness (BR)and lung function (LF) in 1-month-old neonates (before any respiratory symptoms) who later develop acute severe bronchiolitis with those who do not. n =402

Using the raised-volume rapid thoracoabdominal compression technique and 15% decrease in transcutaneous oxygen pressure [methacholine PD15]

Comparison of lung function at age 1 month in children who later have acute severe bronchiolitis versus healthy control subjects

Control subjects (n = 366) vs:	Acute severe bronchiolitis $\{n=34\}$			
Lung function, age 1 mo	Mean difference (95% CI)	P value	Adjusted mean difference* (95% CI)	<i>P</i> value
FEV _{0.5} (z score)	-0.17 (-0.52 to 0.19)	.36	-0.12 (-0.55 to 0.31)	.59
FEF ₅₀ (z score)	$-0.28 \ (-0.65 \ \text{to} \ 0.08)$.13	-0.33 (-0.76 to 0.10)	.14
logPD ₁₅ (PtcO ₂ [μmol])	-0.69 (-1.24 to -0.15)	.01	-0.79 (-1.44 to -0.13)	.02

- Early RV infection is strongly associated with asthma symptoms and/or persistence later in childhood, more than RSV.
- The duration of such associations awaits further follow-up of cohorts.

Lemanske RF et al J Allergy Clin Immunol 2005;116:571–577. Jackson D et al. Am J Respir Crit Care Med 2008;178:667–672. Kotaniemi-Syrjanen A,et al J Allergy Clin Immunol 2003;111:66–71. Synergistic interaction between viral infection and allergic sensitization.

More severe viral illnesses in infancy have been linked to increased risk of developing asthma.

Current drugs for the prevention and treatment of virus-induced exacerbation of asthma are poorly effective.

Processes of RV infection and preventive strategies

Process	Preventive strategies		
Rhinoviral transmission	Hand hygiene, isolation		
Attachment to respiratory epithelium	HRV neutralizing antibodies, anti-receptor antibodies		
	Second generation antihistamines, zinc vaccines		
Entry, RNA and protein synthesis	Anti-rhinoviral therapies (Pleconaril, Ruprintrivir)		
Enhancing immunity	Balanced diet, interferons, immunostimulants, probiotics, breast milk, Echinacea, garlic, zinc, ginseng		

- Strategies for the primary prevention of asthma: prevention of either allergic sensitization or of sLRI in high risk children.
- Intervention measures that can lower the frequency and/or intensity of sLRI in early life amongst the high risk atopic subgroup of children are likely to be successful at preventing asthma.

There are currently no strategies available for the successful prevention of respiratory tract illnesses caused by rhinovirus.

Rosenthal LA et al. J Allergy Clin Immunol 2010;125:1212-7.

- ✓ Respiratory tract illnesses caused by RV are highly frequent in children attending day care.
- ✓ It is possible that avoidance of day care in early life could be used as prevention of asthma.
- ✓ Although day care attendance is associated with increased incidence of wheezing LRIs in early life, it is either unrelated to asthma risk or might be associated with protection against the development of asthma.

Martinez FD J Allergy Clin Immunol 2011;128:939-45

Thank you Obrigado

Dr. Nelson Rosário