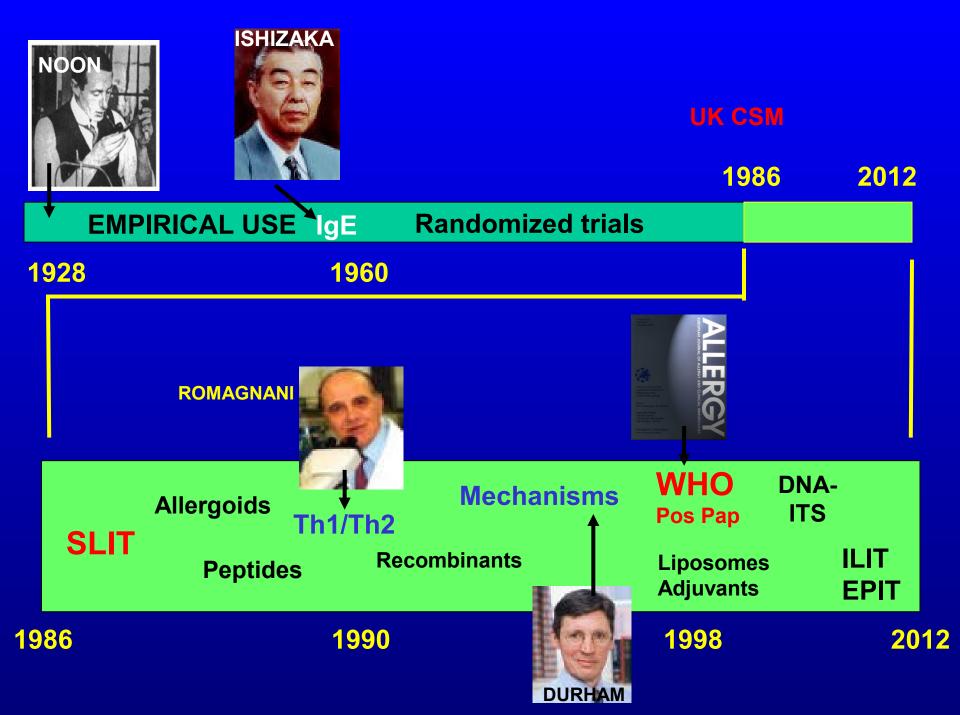
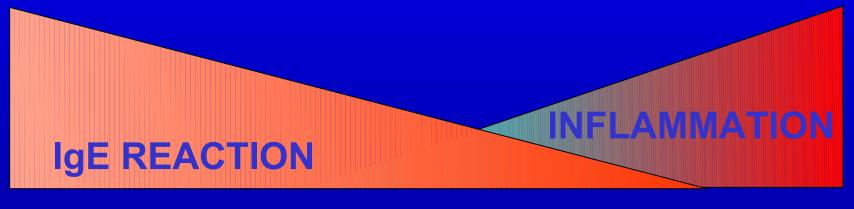

RECOMMENDATIONS FOR APPROPRIATE SLIT TRIALS


Giovanni Passalacqua


Allergy & Respiratory Diseases
Dept.Internal MedicineIRCCS S.Martino – IST University of Genoa ITALY

CHICAGO-WAO-2013

Where does IT preferentially works?

Hymenoptera Allergy

> Food Allergy

Seasonal rhinitis

Atopic dermatitis

Asthma

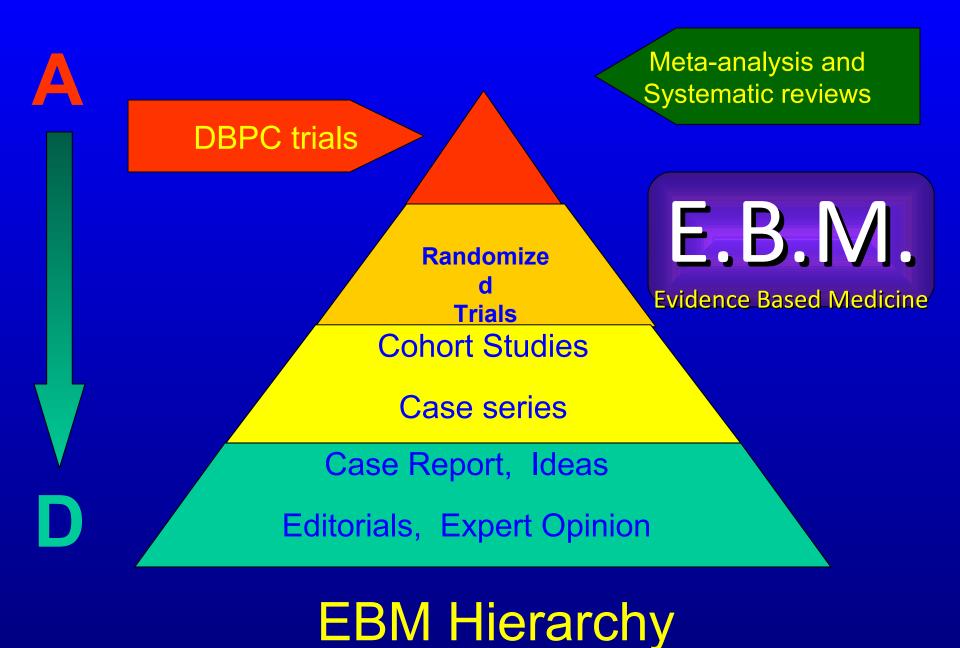
Perennial rhinitis

Factors to be evaluate in SIT prescription

- 1 IgE mediated disease
- 2 Clear identification of the responsible allergen
 - Severity and duration of symptoms
- 4 Efficacy of pharmacological treatment
- 5 Compliance
- 6 Availability of standardized products
 - demonstration of the efficacy

WHO Pos Pap. Therapeutical vaccines for allergic diseases *Allergy* 1998

Standards for practical allergen-specific immunotherapy. *Allergy 2006*



Allergen immunotherapy: A practice parameter second update JACI 2011

Sub-lingual Immunotherapy: WAO Position Paper 2009

CERTAINTIES - EVIDENCE

GREY AREAS

UNMET NEEDS

UNKNOWN

					Sublin
Table 2 Meta-analyses o	n SLIT				lmmun Allergi
Author	Patients	Disease	Trials	Effect Size on Symptoms	Diseas Comment and Sa
Calamita et al, ²² 2006	303 adults + children	Asthma	5 pollens 4 mite	-0.38 ($P = .07$)	No change in symptom score Significant reduction medication score
Wilson et al, ²¹ 2005	959 adults + children	Rhinitis	16 pollens 6 mite	-0.42 ($P = .002$)	Decreased symptoms and medications for rhinitis Asthma not evaluable
Penagos et al, ²⁴ 2006	484 children	Rhinitis	5 pollens 4 mite	-0.56 ($P = .02$)	Decreased symptoms and medications for rhinitis No subanalysis feasible
Penagos et al, ²³ 2008	441 children	Asthma	3 pollen 3 mite	-1.42 ($P = .02$)	Decreased symptoms and medications for asthma
Compalati et al, ²⁸ 2009	858 adults + children	Rhinitis Asthma	Mite 8 rhinitis 9 asthma	Rhinitis, -0.95 Asthma, -0.95 (P = .02)	Significant effect on symptoms and drug intake for both rhinitis and asthma
Di Bona et al, ²⁹ 2010	2791 adults + children	Rhinitis	19 grass	-0.32 (<i>P</i> <.0001)	Decreased symptoms and medications for rhinitis Greater effect in adults

Sublingual Immunotherapy for Allergic Respiratory Diseases: Efficacy and Safety

Giovanni Passalacqua*, Giorgio Walter Canonica

Update on allergy immunotherapy: American Academy of Allergy, Asthma & Immunology/European Academy of Allergy and Clinical Immunology/PRACTALL consensus report

JACI 2013

A. Wesley Burks, MD,^a Moises A. Calderon, MD, PhD,^b Thomas Casale, MD,^c Linda Cox, MD,^d Pascal Demoly, MD, PhD,^e Marek Jutel, MD,^f Harold Nelson, MD,^g and Cezmi A. Akdis, MD^h Chapel Hill, NC, London, United Kingdom, Omaha, Neb, Davie, Fla, Montpellier, France, Wroclaw, Poland, Denver, Colo, and Davos, Switzerland

TABLE E1. Symptom scores

			Partic	cipants		
Disease	Author	Studies (no.)	Population	Active (no.)	Placebo (no.)	Effect size, SMD (95% CI)*
SCIT						
Rhinitis	Calderon,E1 2007	15	Adults	597	466	-0.73 (-0.97 to -0.50)
Asthma	Abramson, E2 2010	34	Adults and children	727	557	-0.59 (-0.83 to -0.35)
SLIT						
Rhinitis	Wilson, E3 2003	21	Adults and children	484	475	-0.42 (-0.69 to -0.15)
Rhinitis	Penagos, E4 2006	10	Children	245	239	-0.56 (-1.01 to -0.10)
Rhinitis	Radulovic, E5 2011	49	Adults and children	2333	2256	-0.49 (-0.64 to -0.34)
Asthma	Calamita, E6 2006	9	Adults and children	150	153	-0.38 (-0.79 to 0.03)
Asthma	Penagos, E7 2008	9	Children	232	209	-1.14 (-2.10 to -0.18)
Conjunctivitis	Calderon, E8 2011	36	Adults and children	1725	1674	-0.41 (-0.53 to -0.28)
House dust mites	Compalati, E9 2009	8	Adults and children	194	188	-0.95 (-1.77 to -0.14)
Grass allergens	Di Bona, E10 2010	19	Adults and children	1518	1453	-0.32 (-0.44 to -0.21)

^{*}Effect size (SMD): poor, <-0.20; medium, -0.50; high, >-0.80.

[†]Heterogeneity (I²) = 0% to 40%, might not be important; 30% to 60%, might represent moderate heterogeneity; 50% to 90%, might represent substantial heterogeneity; 75% to 100%, considerable heterogeneity.

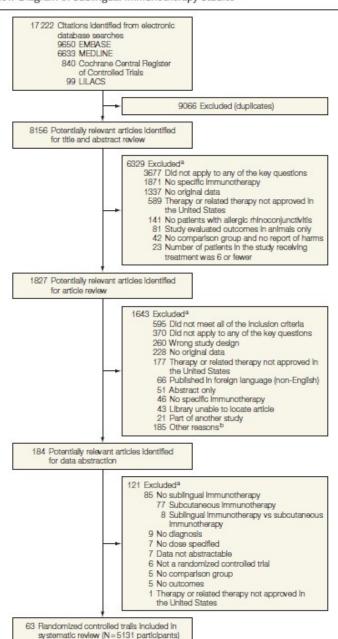
Sublingual Immunotherapy for the Treatment of Allergic Rhinoconjunctivitis and Asthma

A Systematic Review

Sandra Y. Lin, MD
Nkiruka Erekosima, MD, MPH
Julia M. Kim, MD, MPH
Murugappan Ramanathan, MD
Catalina Suarez-Cuervo, MD
Yohalakshmi Chelladurai, MBBS
Darcy Ward, BA
Jodi B. Segal, MD, MPH

Importance Allergic rhinitis affects up to 40% of the US population. To desensitize allergic individuals, subcutaneous injection immunotherapy or sublingual immunotherapy may be administered. In the United States, sublingual immunotherapy is not approved by the Food and Drug Administration. However, some US physicians use aqueous allergens, off-label, for sublingual desensitization.

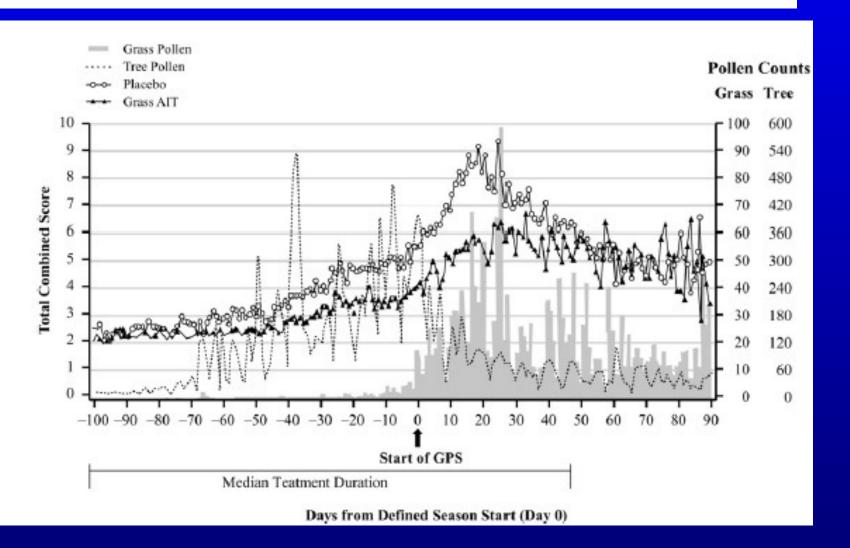
Objective To systematically review the effectiveness and safety of aqueous sublingual immunotherapy for allergic rhinoconjunctivitis and asthma.


Evidence Acquisition The databases of MEDLINE, EMBASE, LILACS, and the Cochrane Central Register of Controlled Trials were searched through December 22, 2012. English-language randomized controlled trials were included if they compared sub-

JAMA, 2013

Results Sixty-three studies with 5131 participants met the inclusion criteria. Participants' ages ranged from 4 to 74 years. Twenty studies (n=1814 patients) enrolled only children. The risk of bias was medium in 43 studies (68%). Strong evidence supports that sublingual immunotherapy improves asthma symptoms, with 8 of 13 studies reporting greater than 40% improvement vs the comparator. Moderate evidence supports that sublingual immunotherapy use decreases rhinitis or rhinoconjunctivitis symptoms, with 9 of 36 studies demonstrating greater than 40% improvement vs the comparator. Medication use for asthma and allergies decreased by more than 40% in 16 of 41 studies of sublingual immunotherapy with moderate grade evidence. Moderate evidence supports that sublingual immunotherapy improves conjunctivitis symptoms (13 studies), combined symptom and medication scores (20 studies), and disease-specific quality of life (8 studies). Local reactions were frequent, but anaphylaxis was not reported.

Conclusions and Relevance The overall evidence provides a moderate grade level of evidence to support the effectiveness of sublingual immunotherapy for the treatment of allergic rhinitis and asthma, but high-quality studies are still needed to answer questions regarding optimal dosing strategies. There were limitations in the standardization of adverse events reporting, but no life-threatening adverse events were noted in this review.


Figure. Flow Diagram of Sublingual Immunotherapy Studies

		7 63			Dur	Dose	VS	Dise	Manuf	Main positive results	Negative results
WORL	D ALLERGY	ORGANIZA	ΓΙΟΝ		a tion	Administration	SCI T	ase	act.**	-	
ıb-lingual Immun					4 m	20 mcg Phl p 5/day. Tablets	NS	RC	STA	Significant reduction in RC score in Vienna challenge chamber at 4 mo in SLIT vs baseline and vs placebo. Reduction 29% vs plac Increase IgE and IgG4	Nasal airflow Weight of secretions Basophil activation
Skoner, 2010	18-50	39 med 36 high 40 plac	4/5/3	Ragweed	6 m	4.8 or 48 mcg Amb a 1/day Metered pump	NS	RC	GRE	Combined symptoms+drugs, and drug score versus placebo	Nasal challenge, IgE Symptom score during peak season
Cortellini 2010	16-44	15/12	0/1	Alternaria	10 m	60 mcg Alt a l cumul. 6 mcg/mo Drops	60	RCA	ANA	Significant reduction in combined score (-38%). Signif. reduction in skin reactivity	Specifcic IgE and IgG4
Panizo, 2010	18-65	52/26	2/1	Grass	5 mo	25 mcg Phl p 5/day. Tablets	NS	RC	ALK	Increase in IgE, IgG4 and IgE blocking activity only in active	
Yonekura, 2010	7-15	20/11	1/2	Mite	l yr	0.5 mcg Der f l once a week	20	RC	TOR	Significant decrease in symptoms and combined score between wks 0-3 and 37-40 only in SLIT	Medication score
Blaiss 2011	5-17	349/358	33/30	Grass	6 m	450 g Phl p5/mo	NS	RC	STA	Significant reduction in combined score (-26%) QoL -38%	Asthma symptoms
Nelson 2011	18-63	213/225	33/33	Grass	10 m	450 mcg Phl p5/mo Tablets	NS	RCA	STA	Significant reduction in combined score (-20%) and medication score (-20%)	
Bush 2011	18-50	High 10 Low 10 Pla 11	2/3/5	Mite (Der f)	18 m	70 or 1 mcg Der f 1/dose. Drops	NS	RA	GRE	Signifreduction in specific bronch reactiv. Increase in IgG4	Symptoms and medication scores
Stelmach, 2012	6-18	Cont 20 Prec 20 Pla 20	3/1/2	Grass	2 yrs	Cumulative 7.3 and 3.6 mcg Phl p 5. Drops		RCA	ALK	Significant improvement in drugs +symptoms with continuous and precos regimen. Reduction eNO.	Symptom score Medication score Pulmonary function
De Bot. 2012	6-18	126/125	15/17	Mite	2 yrs	4.06 mcg Der p 1/week Drops	NS	RC	ART		Symptom score, Qo Medication score, Well days
Cox 2012	18-65	233/240	26/17	Grass	6 m	20-25 mcg Phl p 5/day. Tablets	NS	RC	STA	Reduction in combined symptom+medication score 25% vs placebo. Improvement in QoL. Increase in IgG4	

WAO POS PAP 2013

Michael Blaiss, MD,^a Jennifer Maloney, MD,^{b,c} Hendrik Nolte, MD, PhD,^{b,d} Sandra Gawchik, DO,^e Ruji Yao, PhD,^b and David P. Skoner, MD^{f,g} Memphis, Tenn, Kenilworth, NJ, New York, NY, Copenhagen, Denmark, and Upland, Pittsburgh, and Philadelphia, Pa

ORIGINAL ARTICLE AIRWAY DISEASES

European Academy of Allergy and Clinical Immunology task force report on 'dose-response relationship in allergen-specific immunotherapy'

M. A. Calderón¹, D. Larenas², J. Kleine-Tebbe³, L. Jacobsen⁴, G. Passalacqua⁵, P. A. Eng⁶, E. M. Varga⁷, E. Valovirta⁸, C. Moreno⁹, H. J. Malling¹⁰, E. Alvarez-Cuesta¹¹, S. Durham¹ & P. Demoly¹²

¹National Heart and Lung Institute, Imperial College London, London, UK; ²Hospital Médica Sur, Mexico City, Mexico; ³Allergy & Asthma Center Westend, Berlin, Germany; ⁴Research Centre for Prevention and Health, Glostrup University Hospital, Glostrup, Denmark; ⁵Allergy and Respiratory Diseases, DIMI, Department of Internal Medicine, Genoa, Italy; ⁶Section of Allergy and Pulmonology, Children's Hospital Aarau and Luceme, Switzerland; ⁷Department of Paediatrics, Respiratory and Allergic Disease Division, Medical University Graz, Graz, Austria; ⁸Suomen Terveystalo Allergy Clinic, Turku, Finland; ⁹Seccion de Alergia, Hospital Reina Sofia, Cordoba, Spain; ¹⁰Allergy Unit, University Hospital, Copenhagen, Denmark; ¹¹Allergy Division, Ramon & Cajal University Hospital, Alcala de Henares University, Madrid, Spain; ¹²University Hospital of Montpellier, Montpellier, France

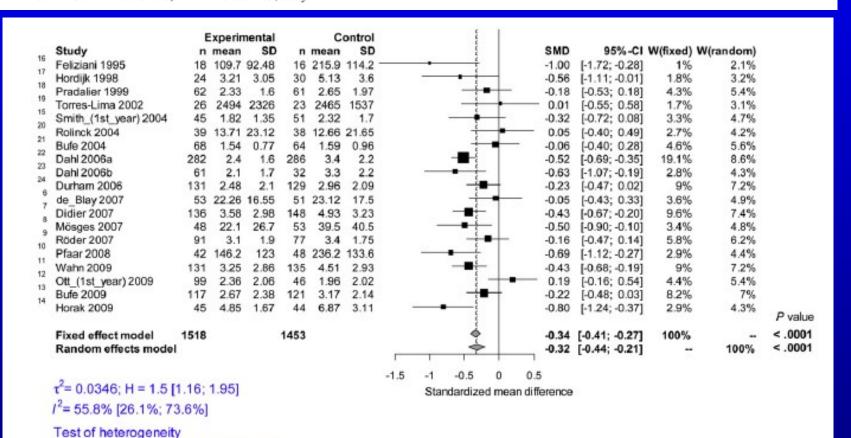
Results: Fifteen dose-ranging studies fulfilled the inclusion criteria and twelve reported a dose-response relationship for clinical efficacy. Several studies also reported a dose-response relationship for immunological and safety endpoints. Due to the use of different reference materials and methodologies for the determination of allergen content, variations in study design, and choice of endpoints, no compansons could be made between studies and, as a consequence, no general dosing recommendations can be made.

DOI: 10.1111/j.1398-9995.2009.021

Review article

The efficacy of sublingual immunotherapy for house dust mites respiratory allergy: results of a GA²LEN meta-analysis

Recent meta-analyses documented the efficacy and safety of sublingual immunotherapy (SLIT) in patients with allergic rhinitis (AR) and asthma (AA).


E. Compalati, G. Passalacqua, M. Bonini, G. W. Canonica

Study or Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% CI	۸			SLIT		PI	lacebo)	;	Std. Mean Difference	Std. Mean Difference	
Bahecilier 0.53 0.4 7 0.41 0.39 7 11.4% 0.28 [-0.77, 1.34] Hirsch 0.99 1.13 11 0.52 0.47 10 12.1% 0.51 [-0.36, 1.39] Ippoliti 0.39 0.71 18 0.82 0.65 15 12.8% -0.61 [-1.32, 0.09] -0.61 [-1.32, 0.09] Pham-Ti 0.12 0.14 54 0.17 0.19 55 13.7% -0.30 [-1.67, 0.08] Tari 8 1.56 30 12 2.1 28 12.9% -2.14 [-2.80, -1.49] Subtotal (95% CI) 120 115 62.9% -0.49 [-1.35, 0.37] Heterogeneity: $r^2 = 0.82$; $\chi^2 = 32.62$, df = 4 ($P < 0.00001$); $I^2 = 88\%$ Score 1.1.2 Adult population Guez 2.6 1.5 36 3.3 1.9 36 13.5% -0.40 [-0.87, 0.06] Passalacqua 1998 75.5 30.7 10 125.6 51 9 11.7% -1.15 [-2.14, -0.16] Passalacqua 2006 1.73 0.14 28 2.28 0.14 28 12.0% -3.87 [-4.78, -2.96] Subtotal (95% CI) 74 73 37.1% -1.79 [-3.89, 0.31] Heterogeneity: $r^2 = 3.27$; $\chi^2 = 44.20$, df = 2 ($P < 0.00001$); $I^2 = 95\%$ Test for overall effect: $Z = 1.67$ ($P = 0.09$)	^ _	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI	
Hirsch 0.99 1.13 11 0.52 0.47 10 12.1% 0.51 [-0.36, 1.39] lppoliti 0.39 0.71 18 0.82 0.65 15 12.8% -0.61 [-1.32, 0.09] Pham-TI 0.12 0.14 54 0.17 0.19 55 13.7% -0.30 [-1.67, 0.08] Tari 8 1.56 30 12 2.1 28 12.9% -2.14 [-2.80, -1.49] Subtotal (95% CI) 120 115 62.9% Heterogeneity: \$\tilde{c}^2 = 0.82\$; \$\tilde{c}^2 = 32.62\$, \$\delta = 4\$ (\$P < 0.00001\$); \$I^2 = 88\%\$ Test for overall effect: \$Z = 1.11\$ (\$P = 0.27\$) Symptom Score Rhintis Guez 2.6 1.5 36 3.3 1.9 36 13.5% -0.40 [-0.87, 0.06] Passalacqua 1998 75.5 30.7 10 125.6 51 9 11.7% -1.15 [-2.14, -0.16] Passalacqua 2006 1.73 0.14 28 2.28 0.14 28 12.0% -3.87 [-4.78, -2.96] Subtotal (95% CI) 74 73 37.1% -1.79 [-3.89, 0.31] Heterogeneity: \$\tilde{c}^2 = 3.27\$; \$\tilde{c}^2 = 44.20\$, \$\delta = 2\$ (\$P < 0.00001\$); \$I^2 = 95\%\$ Test for overall effect: \$Z = 1.67\$ (\$P = 0.09\$) Total (95% CI) 194 188 100.0% -0.95 [-1.77, -0.14] Heterogeneity: \$\tilde{c}^2 = 1.22\$; \$\tilde{c}^2 = 82.81\$, \$\delta = 7\$ (\$P < 0.00001\$); \$I^2 = 92\% Test for overall effect: \$Z = 2.31\$ (\$P = 0.00\$) Total (95% CI) 194 188 100.0% -0.95 [-1.77, -0.14]		1.1.1 Pediatric popula	ition									
Ippoliti		Bahecilier	0.53	0.4	7	0.41	0.39	7	11.4%	0.28 [-0.77, 1.34]		
Pham-Ti 0.12 0.14 54 0.17 0.19 55 13.7%		Hirsch	0.99	1.13	11	0.52	0.47	10	12.1%	0.51 [-0.36, 1.39]	+-	
Tari 8 1.56 30 12 2.1 28 12.9%		Ippoliti	0.39	0.71	18	0.82	0.65	15	12.8%	-0.61 [-1.32, 0.09]	— - -	
Subtotal (95% CI) 120 115 62.9% -0.49 [-1.35, 0.37] Heterogeneity: $\tau^2 = 0.82$; $\chi^2 = 32.62$, df = 4 ($P < 0.00001$); $I^2 = 88\%$ Test for overall effect: $Z = 1.11$ ($P = 0.27$) 1.1.2 Adult population Guez 2.6 1.5 36 3.3 1.9 36 13.5% -0.40 [-0.87, 0.06] Passalacqua 1998 75.5 30.7 10 125.6 51 9 11.7% -1.15 [-2.14, -0.16] Passalacqua 2006 1.73 0.14 28 2.28 0.14 28 12.0% -3.87 [-4.78, -2.96] Subtotal (95% CI) 74 73 37.1% -1.79 [-3.89, 0.31] Heterogeneity: $\tau^2 = 3.27$; $\chi^2 = 44.20$, df = 2 ($P < 0.00001$); $I^2 = 95\%$ Test for overall effect: $Z = 1.67$ ($P = 0.09$) Total (95% CI) 194 188 100.0% -0.95 [-1.77, -0.14] Heterogeneity: $\tau^2 = 1.22$; $\chi^2 = 82.81$, df = 7 ($P < 0.00001$); $I^2 = 92\%$ Test for overall effect: $I = 1.22$; $I $		Pham-Ti	0.12	0.14	54	0.17	0.19	55	13.7%	-0.30 [-1.67, 0.08]		
Heterogeneity: $\tau^2 = 0.82$; $\chi^2 = 32.62$, df = 4 ($P < 0.00001$); $I^2 = 88\%$ Test for overall effect: $Z = 1.11$ ($P = 0.27$) 1.1.2 Adult population Guez		1 4411	8	1.56		12	2.1				<u>^</u>	0
Heterogeneity: $\tau^2 = 0.82$; $\chi^2 = 32.62$, df = 4 ($P < 0.00001$); $I^2 = 88\%$ Test for overall effect: $Z = 1.11$ ($P = 0.27$) 1.1.2 Adult population Guez										-0,49 [-1,35, 0,37]		Symptom
1.1.2 Adult population Guez						(P < 0.	.00001); /² =	88%			0
Guez 2.6 1.5 36 3.3 1.9 36 13.5% -0.40 [-0.87 , 0.06] Passalacqua 1998 75.5 30.7 10 125.6 51 9 11.7% -1.15 [-2.14 , -0.16] Passalacqua 2006 1.73 0.14 28 2.28 0.14 28 12.0% -3.87 [-4.78 , -2.96] Subtotal (95% CI) 74 73 37.1% -1.79 [-3.89 , 0.31] Heterogeneity: $\tau^2 = 3.27$; $\chi^2 = 44.20$, df = 2 ($P < 0.00001$); $I^2 = 95\%$ Test for overall effect: $I = 1.67$ ($I = 0.09$) Total (95% CI) 194 188 100.0% $I = 0.09$ 195 [$I = 0.09$] Heterogeneity: $I = 1.22$; $I = 0.09$ 195 [$I = 0.09$] 197 [$I = 0.09$] 197 [$I = 0.09$] 197 [$I = 0.09$] 198 [$I = 0.09$] 199 [$I $		Test for overall effect: 2	Z = 1.11	(P=	0.27)							Score
Guez 2.6 1.5 36 3.3 1.9 36 13.5% -0.40 [-0.87 , 0.06] Passalacqua 1998 75.5 30.7 10 125.6 51 9 11.7% -1.15 [-2.14 , -0.16] Passalacqua 2006 1.73 0.14 28 2.28 0.14 28 12.0% -3.87 [-4.78 , -2.96] Subtotal (95% CI) 74 73 37.1% -1.79 [-3.89 , 0.31] Heterogeneity: $\tau^2 = 3.27$; $\chi^2 = 44.20$, df = 2 ($P < 0.00001$); $I^2 = 95\%$ Test for overall effect: $I = 1.67$ ($I = 0.09$) Total (95% CI) 194 188 100.0% $I = 0.09$ 195 [$I = 0.09$] Heterogeneity: $I = 1.22$; $I = 0.09$ 195 [$I = 0.09$] 197 [$I = 0.09$] 197 [$I = 0.09$] 197 [$I = 0.09$] 198 [$I = 0.09$] 199 [$I $		1.1.2 Adult population	n									Phintie
Passalacqua 1998 75.5 30.7 10 125.6 51 9 11.7% -1.15 [-2.14 , -0.16] Passalacqua 2006 1.73 0.14 28 2.28 0.14 28 12.0% -3.87 [-4.78 , -2.96] Subtotal (95% CI) 74 73 37.1% -1.79 [-3.89 , 0.31] Heterogeneity: $\tau^2 = 3.27$; $\chi^2 = 44.20$, df = 2 ($P < 0.00001$); $I^2 = 95\%$ Test for overall effect: $Z = 1.67$ ($P = 0.09$) Total (95% CI) 194 188 100.0% -0.95 [-1.77 , -0.14] Heterogeneity: $\tau^2 = 1.22$; $\chi^2 = 82.81$, df = 7 ($P < 0.00001$); $I^2 = 92\%$				1.5	36	3.3	1.9	36	13.5%	-0.40 [-0.87, 0.06]		Killitas
Passalacqua 2006 1.73 0.14 28 2.28 0.14 28 12.0% -3.87 [-4.78, -2.96] Subtotal (95% CI) 74 73 37.1% -1.79 [-3.89, 0.31] Heterogeneity: $\tau^2 = 3.27$; $\chi^2 = 44.20$, df = 2 ($P < 0.00001$); $I^2 = 95\%$ Test for overall effect: $Z = 1.67$ ($P = 0.09$) Total (95% CI) 194 188 100.0% -0.95 [-1.77, -0.14] Heterogeneity: $\tau^2 = 1.22$; $\chi^2 = 82.81$, df = 7 ($P < 0.00001$); $I^2 = 92\%$ -10 -5 0 5		Passalacqua 1998			10						——	
Subtotal (95% CI) 74 73 37.1% -1.79 [-3.89 , 0.31] Heterogeneity: $\tau^2 = 3.27$; $\chi^2 = 44.20$, df = 2 ($P < 0.00001$); $I^2 = 95\%$ Test for overall effect: $Z = 1.67$ ($P = 0.09$) Total (95% CI) 194 188 100.0% -0.95 [-1.77 , -0.14] Heterogeneity: $\tau^2 = 1.22$; $\chi^2 = 82.81$, df = 7 ($P < 0.00001$); $I^2 = 92\%$ Test for everall effect: $Z = 2.31$ ($P = 0.02$)					28	2.28	0.14	28				
Test for overall effect: $Z = 1.67$ ($P = 0.09$) Total (95% CI) 194 188 100.0% -0.95 [-1.77 , -0.14] Heterogeneity: $\tau^2 = 1.22$; $\chi^2 = 82.81$, df = 7 ($P < 0.00001$); $I^2 = 92\%$ Test for everall effect: $Z = 2.31$ ($P = 0.03$)		-			74			73				
Test for overall effect: $Z = 1.67$ ($P = 0.09$) Total (95% CI) 194 188 100.0% -0.95 [-1.77 , -0.14] Heterogeneity: $\tau^2 = 1.22$; $\chi^2 = 82.81$, df = 7 ($P < 0.00001$); $I^2 = 92\%$ Test for everall effect: $Z = 2.31$ ($P = 0.03$)		Heterogeneity: $\tau^2 = 3.2$	7; $\chi^2 = $	44.20,	df = 2	(P < 0.	.00001); $I^2 =$	95%			
Heterogeneity: $\tau^2 = 1.22$; $\chi^2 = 82.81$, df = 7 ($P < 0.00001$); $I^2 = 92\%$ Test for everall effect; $Z = 2.31$ ($P = 0.03$) 5						,		,-				
Heterogeneity: $\tau^2 = 1.22$; $\chi^2 = 82.81$, df = 7 ($P < 0.00001$); $I^2 = 92\%$ Test for everall effect; $Z = 2.31$ ($P = 0.03$) 5												
Test for everall effect; 7 = 2.31 (P = 0.02)		Total (95% CI)			194			188	100.0%	-0.95 [-1.77, -0.14]	•	
Test for everall effect: $7 = 2.31 (P = 0.02)$		Heterogeneity: $\tau^2 = 1.2$	2; χ ² =	82,81,	df = 7	(P < 0,	0000	i); I ² =	92%	10		5 10
Favoure freatment Favoure control										-10	Favours treatment Favours control	5 10

Efficacy of sublingual immunotherapy with grass allergens for seasonal allergic rhinitis: A systematic review and meta-analysis

Danilo Di Bona, MD, PhD,^{a,e} Antonella Plaia, PhD,^b Valeria Scafidi, PhD,^{a,c} Maria Stefania Leto-Barone, MD,^d and Gabriele Di Lorenzo, MD^d Palermo, Italy

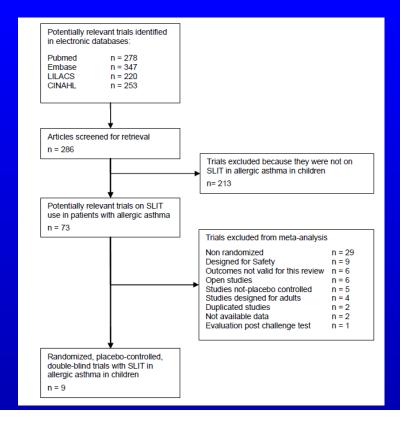
Q = 40.74, df = 18. P value = .0017

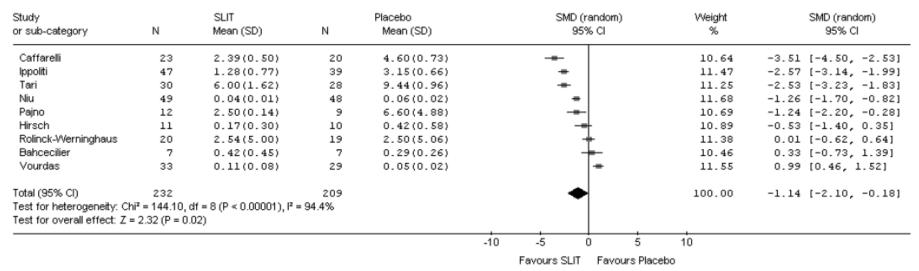
CERTAINTIES - EVIDENCE

DOUBTFUL

UNMET NEEDS

UNKNOWN


CHEST

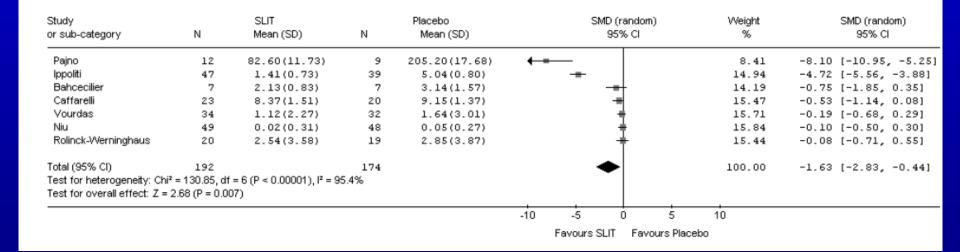

Official publication of the American C ollege of Chest Physicians

Meta-analysis of the efficacy of sublingual immunotherapy in the treatment of allergic asthma in pediatric patients, 3 to 18 years of age.

Martin Penagos, Giovanni Passalacqua, Enrico Compalati, Carlos E. Baena-Cagnani, Socorro Orozco, Alvaro Pedroza and Giorgio Walter Canonica

Chest published online October 20, 2007;

CHEST


Official publication of the American College of Chest Physicians

Meta-analysis of the efficacy of sublingual immunotherapy in the treatment of allergic asthma in pediatric patients, 3 to 18 years of age.

Martin Penagos, Giovanni Passalacqua, Enrico Compalati, Carlos E. Baena-Cagnani, Socorro Orozco, Alvaro Pedroza and Giorgio Walter Canonica

Chest published online October 20, 2007;

FIGURE 3. OUTCOME: MEDICATION SCORE.

GRADE: Grading of Recommendation Assessment, **Developing and Evaluation**

Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines: 2010 revision

Should subcutaneous specific immunotherapy be used for treatment of AR in adults without concomitant ASTHMA?

Recommendation

We suggest subcutaneous allergen specific immunotherapy in adults with seasonal AR (conditional recommendation | moderate-quality evidence) and persistent AR caused by mites (conditional recommendation | low-quality evidence).

Should subcutaneous specific immunotherapy be used for treatment of in children without concomitant ASTHMA?

Recommendation

In children with, we suggest subcutaneous specific immunotherapy (conditional recommendation | low-quality evidence).

Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines: 2010 revision

Should subcutaneous allergen-specific immunotherapy be used in patients with AR and concomitant asthma?

Recommendation

In patients with AR and asthma, we suggest subcutaneous specific immunotherapy for treatment of asthma (conditional recommendation | moderate-quality evidence).

Should sublingual allergen-specific immunotherapy be used in patients with AR and concomitant asthma?

Recommendation

In patients with AR and asthma, we suggest sublingual specific immunotherapy for treatment of asthma (conditional recommendation | low-quality evidence).

Update on allergy immunotherapy: American Academy of Allergy, Asthma & Immunology/European Academy of Allergy and Clinical Immunology/PRACTALL consensus report

JACI 2013

A. Wesley Burks, MD,^a Moises A. Calderon, MD, PhD,^b Thomas Casale, MD,^c Linda Cox, MD,^d Pascal Demoly, MD, PhD,^e Marek Jutel, MD,^f Harold Nelson, MD,^g and Cezmi A. Akdis, MD^h Chapel Hill, NC, London, United Kingdom, Omaha, Neb, Davie, Fla, Montpellier, France, Wroclaw, Poland, Denver, Colo, and Davos, Switzerland

TABLE E1. Symptom scores

				Parti	cipants		
Disease	Author	Studies (no.)	Population	Active (no.)	Placebo (no.)	Effect size, SMD (95% CI)*	Heterogeneity I ² †
SCIT							
Rhinitis	Calderon,E1 2007	15	Adults	597	466	-0.73 (-0.97 to -0.50)	63%
Asthma	Abramson, E2 2010	34	Adults and children	727	557	-0.59 (-0.83 to -0.35)	73%
SLIT							
Rhinitis	Wilson, E3 2003	21	Adults and children	484	475	-0.42 (-0.69 to -0.15)	73%
Rhinitis	Penagos, E4 2006	10	Children	245	239	-0.56 (-1.01 to -0.10)	81%
Rhinitis	Radulovic, E5 2011	49	Adults and children	2333	2256	-0.49 (-0.64 to -0.34)	81%
Asthma	Calamita, E6 2006	9	Adults and children	150	153	-0.38 (-0.79 to 0.03)	64%
Asthma	Penagos, E7 2008	9	Children	232	209	-1.14 (-2.10 to -0.18)	94%
Conjunctivitis	Calderon, E8 2011	36	Adults and children	1725	1674	-0.41 (-0.53 to -0.28)	59%
House dust mites	Compalati, E9 2009	8	Adults and children	194	188	-0.95 (-1.77 to -0.14)	92%
Grass allergens	Di Bona, E10 2010	19	Adults and children	1518	1453	-0.32 (-0.44 to -0.21)	56%

^{*}Effect size (SMD): poor, <-0.20; medium, -0.50; high, >-0.80.

[†]Heterogeneity (I²) = 0% to 40%, might not be important; 30% to 60%, might represent moderate heterogeneity; 50% to 90%, might represent substantial heterogeneity; 75% to 100%, considerable heterogeneity.

Comparing subcutaneous and sublingual immunotherapy: what do we know?

Nerin N. Bahceciler and Nilufer Galip Curr Opin Allergy Clin Immunol 2012

				Doramon		
Reference	Design	Patient number	Allergen	(month)	Clinical results	Immunological results
Adults						
Quirino et al. [59]	RPC-DBDD	10 SLIT; 10 SCIT	Grass	12	SS \downarrow MS \downarrow in SLIT and SCIT	↑sp IgG, IgG4↓ in SPT reactivity in SCIT
Mungan et al. [58]	R-Open-SLITc	15 SLIT; 10SCIT; 11SL PLAC	HDM	12	Rhinitis SS↓, MS↓ in SCIT and SLIT asthma SS↓ in SCIT	↓SPT reactivity in SCIT
Khinchi et al. [56]	RPC-DBDD	21 SCIT; 18 SLIT; 19 PLAC	Birch	24	Rhinitis MS↓ in SCIT and SLIT	NE
Bernardis et al. [57]	Open	23 total	Alternaria	24	↓SS, ↓MS, ↑NP threshold in SCIT and SLIT	↓sp lgE, ↑lgG, ↓SPT reactivity in SCIT
Children						
Antúnez et al. [60]	R-open	12 SCIT; 11SLIT	HDM	24	NE	↓sp lgE, ↑lgG4 in SCIT, ↑sp lgE/lgG4, ↓CD8+ CD25+ in SCIT
Yukselen et al. [61]	RPC-DBDD	30 total	HDM	12	↓SS, MS, VAS in SCIT↓ MS and VAS in SLIT↑ NP threshold in SCIT and SLIT	↑sp IgG4 in SCIT ↑ IL-10↑, ↓ SPT reactivity, ↓sp IgE in SCIT and SLIT
Eifan et al. [62]	R-Open-C	16 SLIT; 16 SCIT; 16 PHARM	HDM	12	↓SS, MS, VAS, ↓nasal threshold in SLIT and SCIT	↓sp IgE, ↓SPT reactivity in SCIT and SLIT ↑ IL-10 in SLIT
Keles et al. [63**]	R-Open-C	15 SCIT; 15 SLIT; 15 SCIT + SLIT; 15 PHARM	HDM	18	↓SS, MS, ICS dose, asthma attack no in SCIT, SUT and SCIT-plus-SLIT, ↓NP threshold in SCIT, SLIT and SCIT-plus-SLIT	† Il-10, TGFβ, IFNγ in SCIT, SLIT and SCIT-plus-SLIT †sp IgG4 in SCIT and SCIT-plus-SLIT

HDM, house dust mite; MS, medication scores; NE, not evaluated; NP, nasal provocation; PHARM, pharmacotherapy; R-Open, randomized open; R-Open-C, randomized open controlled; R-Open-SLITc, randomized open placebo sublingual immunotherapy (SLIT) controlled; RPC-DBDD, randomized, placebo-controlled, double-blinded double dummy; SCIT, subcutaneous immunotherapy; sp, specific; SPT, skin prick test; SS, symptom scores; VAS, visual analogue score.

Assessment of sublingual imr efficacy in children with hous mite-induced allergic asthma controlled by pharmacologic and mite-avoidance measures

Pham Ti, PAI 2007

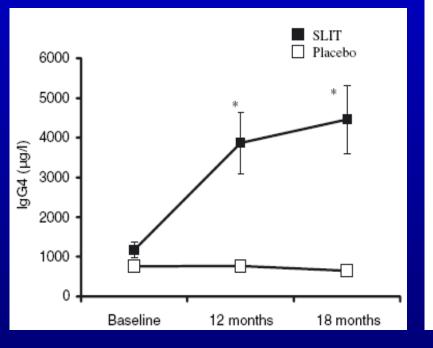
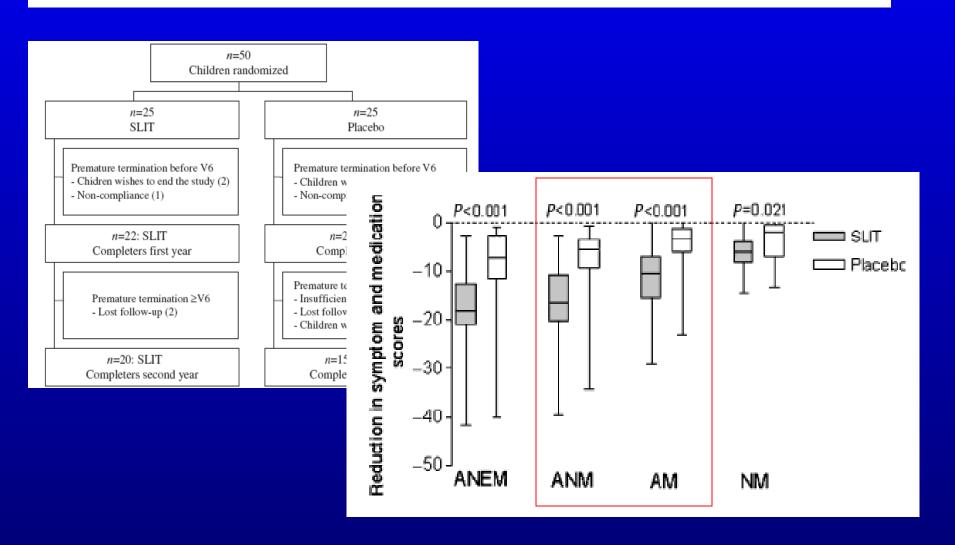


Table 2. Symptoms scores, medication intake and lung function parameters at baseline and at SLIT endpoint

	SLIT (n = 54), mean ± s.d.	Placebo (n = 55), mean ± s.d.	p-value*
Diumal asthma			
Baseline	0.19 ± 0.30	0.17 ± 0.24	
Endpoint	0.15 ± 0.26	0.08 ± 0.17	NS
Nocturnal asthma	9		
Baseline	0.17 ± 0.30	0.11 ± 0.18	
Endpoint	0.10 ± 0.19	0.07 ± 0.16	NS
% asthma-free d	ays		
Baseline	78.5 ± 27.4	80.8 ± 23.8	
Endpoint	85.8 ± 23.8	91.1 ± 15.4	NS
Use of inhaled s	teroids (µg budesonid	e/day)	
Baseline	548 ± 220	534 ± 237	
Endpoint	257 ± 232	223 ± 270	NS
Use of inhaled β	₂ -agonists (terbutaline	e puffs/day)	
Baseline	0.87 ± 0.5	0.90 ± 0.8	
Endpoint	0.55 ± 0.6	0.47 ± 0.5	NS
Rhinitis daily sco	re		
Baseline	0.71 ± 0.76	0.50 ± 0.58	
Endpoint	0.12 ± 0.14	0.17 ± 0.19	NS
PEFR variability (%)		
Baseline	8.03 ± 7.21	7.48 ± 6.14	
Endpoint	6.06 ± 5.45	6.36 ± 5.65	NS
FEV ₁ (% predicte	d value)		
Baseline	91.9 ± 13.4	95.1 ± 15.1	
Endpoint	88.5 ± 13.4	94.5 ± 14.6	NS

Specific immunotherapy with SQ standardized grass allergen tablets in asthmatics with rhinoconjunctivitis

Background: The best way to prevent allergy symptoms is to treat the allergic | R. Dahl¹, A. Stender², S. Rak³


Table 3. Average daily asthma medication and symptom score

	Pre	eseason	Grass pollen season		
Treatment group analysis set	Placebo FAS (N = 40)	75 000 SQ-T FAS (N = 73)	Placebo FAS (N = 39)*	75 000 SQ-T FAS (N = 68)*	
Asthma medication score					
Mean (SD)	0.09 (0.14)	0.09 (0.23)	0.66 (1.08)	0.71 (1.28)	
Median	0.00	0.00	0.07	0.00	
Minimum-maximum	0.00-0.49	0.00-1.35	0.00-4.00	0.00-5.33	
Asthma symptom score					
Mean (SD)	0.33 (0.33)	0.23 (0.34)	0.74 (0.92)	0.44 (0.68)	
Median	0.23	0.10	0.36	0.18	
Minimum-maximum	0.00-1.05	0.00-2.00	0.00-3.60	0.00-3.67	

Efficacy and safety of high-doses sublingual immunotherapy in ultra-rush scheme in children allergic to grass pollen

I. Stelmach, J. Kaczmarek-Woźniak, P. Majak, M. Olszowiec-Chlebna and J. Jerzynska Department of Pediatrics and Allergy, N Copernicus Hospital, Lodz, Poland

March 2009

PROBLEMS:

The majority of the trials were not designed and sized for asthma as primary outcome

Heterogeneity of study designs, duration, dose and evaluation parameters.

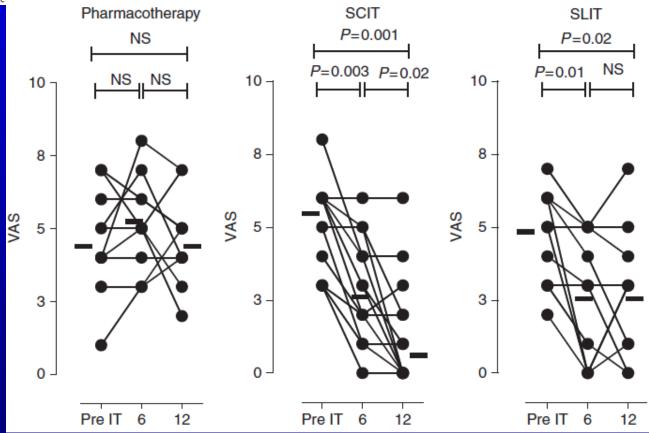
Few studies had functional parameters evaluated

Implications for clinical trials:

If asthma is investigated, the trial should consider asthma as primary outcome

Functional parameters (FEV1, VEMS, oscillometry) should be evaluated

Patients should be symptomatic, or therapeutic control should be evaluated.


ORIGINAL ARTICLE Clinical Allergy

Clinical efficacy and immunological mechanisms of sublingual and subcutaneous immunotherapy in asthmatic/rhinitis children sensitized to house dust mite: an open randomized controlled trial

A. O. Eifan^{1,2}, T. Akkoc¹, A. Yildiz¹, S. Keles¹, C. Ozdemir¹, N. N. Bahceciler¹ and I. B. Barlan¹

¹Division of Pediatric Allergy and Immunology, Marmara University Medical Faculty, Istanbul, Turkey and ²Allergy & Clinical Immunology Section, NHLI,

Imperial College, Fac

REVIEW ARTICLE

Sublingual allergen immunotherapy: mode of action and its relationship with the safety profile

M. A. Calderón¹, F. E. R. Simons², H.-J. Malling³, R. F. Lockey⁴, P. Moingeon⁵ & P. Demoly⁶

Table 1 Clinical efficacy of SLIT and SCIT in comparative studies

Authors	Year	Study design	Patients (<i>n</i>)	Patient age range	Allergen extract	Treatment duration	SLIT allergen dose (-fold the SCIT dose)	Conclusion in terms of efficacy
Bernardis et al. (9)	1996	Open, controlled, no placebo	23	5–26	Alternaria tenuis	2 years	×3.6	SLIT > SCIT
Quirino et al. (10)	1996	RCT, double-dummy, no placebo	20	13–39	Five grasses	1 year	×2.4	SLIT = SCIT
Mungan et al. (11)	1999	RCT, single-blind, placebo	36	18–46	Der p, Der f	1 year	×80	SLIT = SCIT
Khinchi et al. (12)	2004	RCT double-dummy, placebo	58	20–58	Birch	2 years	×210	SLIT = SCIT
Herrscher (13)	2006	Patient survey	328	3–71	Multi-allergen extracts	Typically 9–18 months	×5–10	SLIT = SCIT
Mauro et al. (14)	2007	RCT, no placebo	47	18–59	Alder, birch, and hazel	Not stated	×92	SLIT = SCIT

Implications for clinical trials:

The optimal study design to compare SLIT and SCIT is the DB DD RPC fashion

This is not currently feasible, due to economic limitations.

Changing the route of immunotherapy administration: An 18-year survey in pediatric patients with allergic rhinitis and asthma

Giovanni Pajno, M.D., Lucia Caminiti, M.D., and Giovanni Passalacqua, M.D.²

		SLIT TO SCIT $(n = 340/4285)$	$p\chi^2$				
%	8.3	7.9	NS				
Nonadherence	5 (9.25%)	48 (14.12%)	NS				
Side effects	49 (90.75%)	0	< 0.001				
Inefficacy	0	292 (85.88%)	< 0.001				
Parietaria	29 (4.47%)*	184 (4.29%)*	NS				
Grass	18 (2.77%)*	110 (2.56%)*	NS				
Dust mite	5 (0.77%)	41 (0.95%)	NS				
Olive	2 (0.30)	5 (0.11%)	NS				
Olive 2 (0.30) 5 (0.11%) NS Numbers, percentages, and reasons for shifting the regimen. *SCIT for single allergen: Parietaria, 10.62%, and grass, 8.32%. *SLIT for single allergen: Parietaria 11.73%, and grass, 8.95%. NS = not significant; SCIT = subcutaneous immunotherapy; SLIT = sublingual immunotherapy.							

ANAPHYLAXES DUE TO SLIT

AUTHOR	SEX	AGE	ALLERG	EPINEPH
Antico	M	36	Latex	?
Dunsky	F	31	Mix	N
Eifan	F	11	Mix	N
Blazowski	F	16	Mite	Y
Rodriguez	M	11	Mite	N
De Groot	M	13	Grass	Y
De Groot	F	27	Grass	Y
Buyukozurk	M	28	Latex	Y
Buyukozurk	M	35	Latex	Y
Rodriguez	M	27	Mite	Y
Rodriguez	F	7	Mite	Y

Speaking the same language: The World Allergy Organization Subcutaneous Immunotherapy Systemic Reaction Grading System

Linda Cox, MD, a Desiree Larenas-Linnemann, MD, Bichard F. Lockey, MD, and Giovanni Passalacqua, MD, Editors

Davie and Tampa, Fla, M TABLE I. World Allergy Organization Subcutaneous Immunotherapy Systemic Reaction Grading System (see text)

Grade 1	Grade 2	Grade 3	Grade 4	Grade 5
Symptom(s)/sign(s) of 1 organ system present* Cutaneous Generalized pruritus, urticaria, flushing, or sensation of heat or warmth† or Angioedema (not laryngeal, tongue or uvular) or Upper respiratory Rhinitis - (eg, sneezing, rhinorrhea, nasal pruritus and/ or nasal congestion) or Throat-clearing (itchy throat) or Cough perceived to originate in the upper airway, not the lung, larynx, or trachea or Conjunctival Erythema, pruritus or tearing Other Nausea, metallic taste, or headache	Symptom(s)/sign(s) of more than I organ system present or Lower respiratory Asthma: cough, wheezing, shortness of breath (eg, less than 40% PEF or FEV1 drop, responding to an inhaled bronchodilator) or Gastrointestinal Abdominal cramps, vomiting, or diarrhea or Other Uterine cramps	Lower respiratory Asthma (eg, 40% PEF or FEV ₁ drop NOT responding to an inhaled bronchodilator) or Upper respiratory Laryngeal, uvula, or tongue edema with or without stridor	Lower or upper respiratory Respiratory failure with or without loss of consciousness or Cardiovascular Hypotension with or without loss of consciousness	Death

Patients may also have a feeling of impending doom, especially in grades 2, 3, or 4.

Note: Children with anaphylaxis seldom convey a sense of impending doom and their behavior changes may be a sign of anaphylaxis; eg, becoming very quiet or irritable and cranky. Scoring includes a suffix that denotes if and when epinephrine is or is not administered in relationship to onset of symptom(s)/sign(s) of the SR:a, ≤ 5 minutes; to ≤ 10 minutes; c: ≥ 10 to ≤ 20 minutes; d: ≥ 20 minutes; z, epinephrine not administered.

The final grade of the reaction will not be determined until the event is over, regardless of the medication administered. The final report should include the first symptom(s)/sign(s) and the time of onset after the subcutaneous allergen immunotherapy injection*** and a suffix reflecting if and when epinephrine was or was not administered, eg, Grade 2a; rhinitis:10 minutes.

Final Report: Grade a-d, or z______First symptom(s)/sign(s)______Time of onset of first symptom_____

Grading local side effects of sublingual immunotherapy for respiratory allergy: Speaking the same language

Giovanni Passalacqua, MD,^a Carlos E. Baena-Cagnani, MD,^b Jean Bousquet, MD,^c Giorgio Walter Canonica, MD,^a Thomas B. Casale, MD,^d Linda Cox, MD,^e Stephen R. Durham, MD,^f Desiréé Larenas-Linnemann, MD,^g Dennis Ledford, MD,^h Ruby Pawankar, MD,ⁱ Paul Potter, MD,^j Nelson Rosario, MD,^k Dana Wallace, MD,^l and Richard F. Lockey, MD^h Genoa, Italy, Cordoba, Argentina, Montpellier, France, Omaha, Neb, Ft Lauderdale and Tampa, Fla, London, United Kingdom, Mexico City, Mexico, Tokyo, Japan, Groote Schuur, South Africa, Curitiba, Brazil, and Arlington Heights, Ill

From ^aAllergy and Respiratory Diseases, University of Genoa; ^bCatholic University of Cordoba; ^cUniversity Hospital, Hopital A. de Villeneuve, Department of Respiratory Diseases, Montpellier; ^dthe Creighton University School of Medicine, Omaha; ^eNova Southeastern University, Ft Lauderdale; ^fthe National Heart and Lung Institute, Imperial College, London; ^gthe Allergy Department, Hospital Medica Sur, Mexico City; ^hthe University of South Florida, Tampa; ⁱNippon Medical School, Tokyo; ^jthe University of Cape Town, Groote Schuur; ^kthe Federal University of Parana, Curitiba; and ¹the American College of Allergy Asthma and Immunology, Arlington Heights.

This document has been officially endorsed by the American Academy of Allergy, Asthma & Immunology (AAAAI); the Asia Pacific Association of Allergy, Asthma and Clinical Immunology (APAAACI); the American College of Allergy, Asthma and Immunology (ACAAI); and the Latin American Society for Allergy and Immunology (SLAAI).

Implications for clinical trials:

Adverse events should be described, graded and classified in a standardized fashion

Adverse events should be notified promptly, to monitoring authorities or manufacuturers

CERTAINTIES - EVIDENCE

DOUBTFUL

UNMET NEEDS

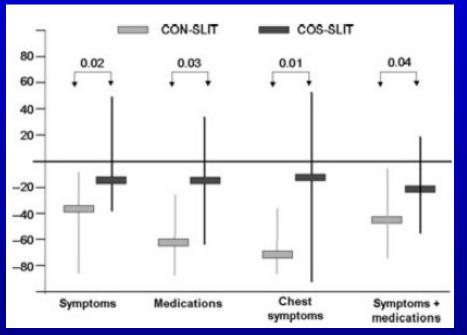
UNKNOWN

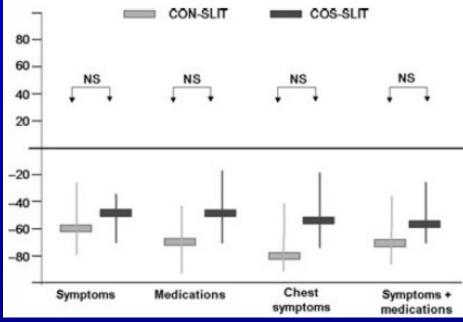
UNSOLVED QUESTIONS

Optimal maintenance regimen (continuous VS pre-coseasonal)

Dose and extract standardization?

Better drugs or SIT?


Polysensitized?


Optimal maintenance SLIT dose for other allergens

SHORT REPORT

Direct comparison between continuous and coseasonal regimen for sublingual immunotherapy in children with grass allergy: A randomized controlled study

Giovanni B. Pajno¹, Lucia Caminiti¹, Giuseppe Crisafulli¹, Daniela Vita¹, Mariella Valenzise¹, Raffaele De Luca¹ & Giovanni Passalacqua²

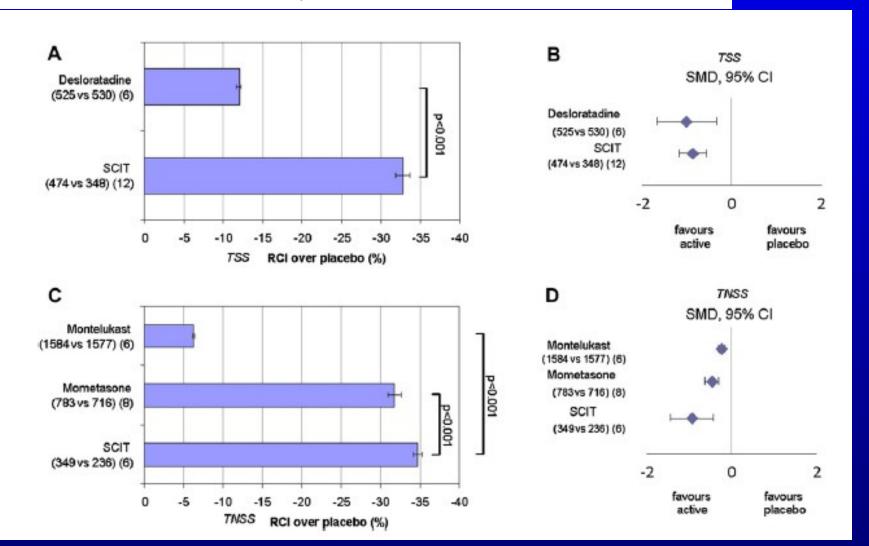
Allergy

ORIGINAL ARTICLE

EXPERIMENTAL ALLERGY AND IMMUNOLOGY

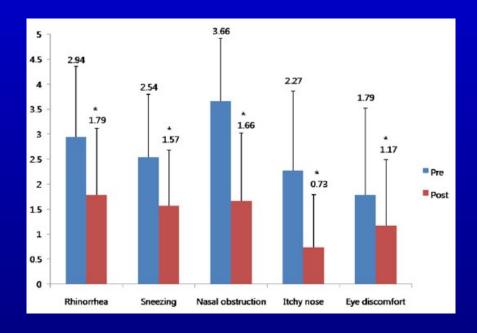
Comparative effect of pre-coseasonal and continuous grass sublingual immunotherapy in children

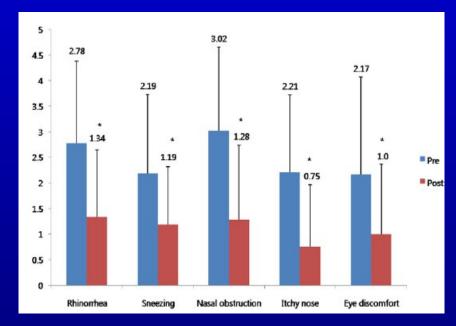
I. Stelmach¹, I. Kaluzińska-Parzyszek¹, J. Jerzynska¹, P. Stelmach², W. Stelmach³ & P. Majak¹


Allergen content of grass pollen preparations for skin prick testing and sublingual immunotherapy

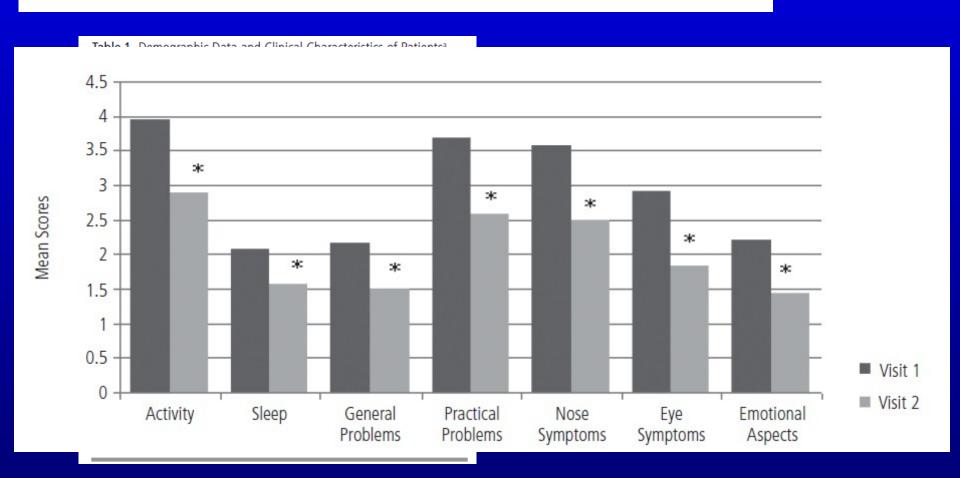
Background: The allergen content of diagnostics and immunotherapeutics is | I. Sander, C. Fleischer, U. Meurer,

Manufacturer	Conc.	Protein (µg/ml)	PhI p 5 (µg/ml)
Allergopharma	50 000 SBE/ml	77	8.75
ALK-Abelló	10 HEP	84	4.19
Allergy Therapeutics	10 000 DU/ml	15	0.15
HAL Allergy	10 000 AU/ml	427	18.30
Stallergenes	100 RI	30	2.70


Subcutaneous immunotherapy and pharmacotherapy in seasonal allergic rhinitis: A comparison based on meta-analyses


Paolo Maria Matricardi, MD, Piotr Kuna, MD, Valentina Panetta, MSc, Ulrich Wahn, MD, and Annemie Narkus, MD^c Berlin and Reinbeck, Germany, and Lodz, Poland

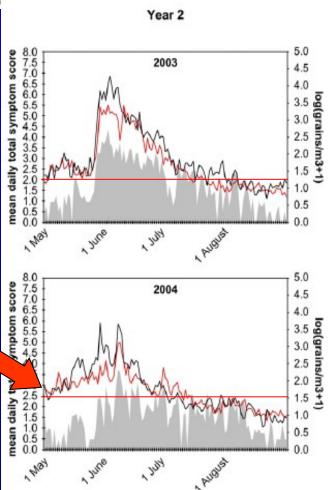
Efficacy of sublingual immunotherapy with house dust mite extract in polyallergen sensitized patients with allergic rhinitis

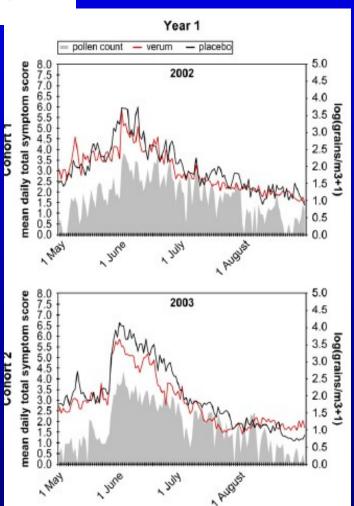

Ji-Eun Lee, MD*; Yoon-Seok Choi, MD*; Min-Su Kim, MD*; Doo Hee Han, MD*; Chae-Seo Rhee, MD*†; Chul Hee Lee, MD*†; and Dong-Young Kim, MD*†

Sublingual Immunotherapy in Polysensitized Patients: Effect on Quality of Life

G Ciprandi,¹ G Cadario,² C Valle,³ E Ridolo,⁴ M Verini,⁵ M Di Gioacchino,⁶ M Minelli,⁷ S Gangemi,⁸ V Sillano,⁹ C Colangelo,¹⁰ V Pravettoni,¹¹ R Pellegrino,¹² P Borrelli,¹³ A Fiorina,¹⁴ A Carosso,¹⁵ A Gasparini,¹⁶ GG Riario-Sforza,¹⁷ C Incorvaia,¹⁷ P Puccinelli,¹⁸ S Scurati,¹⁸ F Frati¹⁸

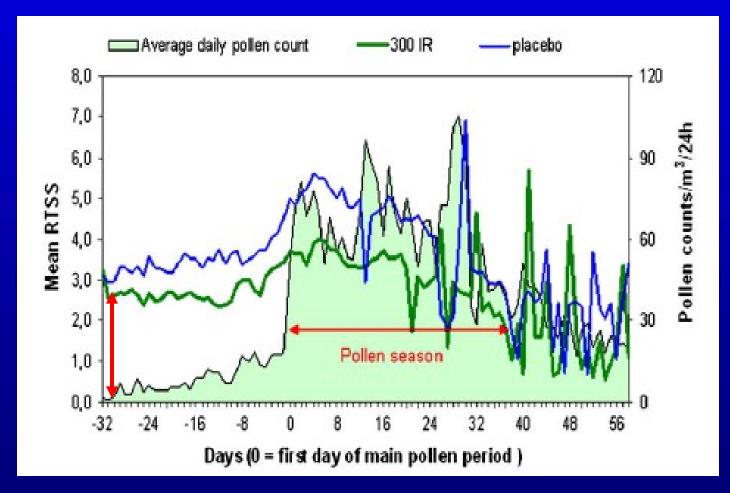
METHODOLOGICAL ISSUES

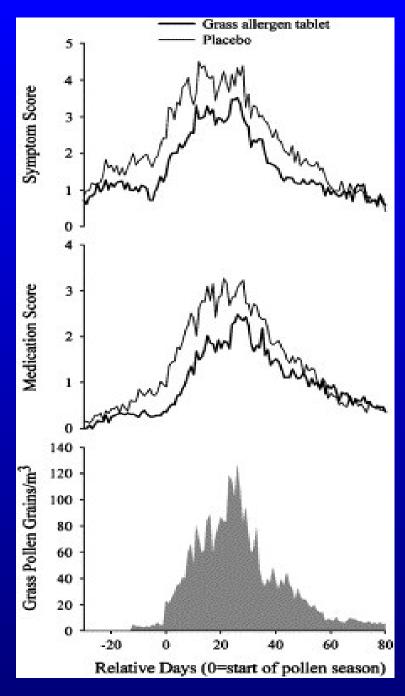

- HETEROGENEITY OF TRIALS
- DOSES
- -PATIENTS' SELECTION
- PRIMARY OUTCOME/ANALYSIS
- SAMPLE SIZE CALCULATION
- ADHERENCE
- REPORTING


Sublingual immunotherapy with grass pollen is not effective in symptomatic youngsters in primary care

Esther Röder, MD, a,b Marjolein Y. Berger, MD, PhD,b Wim C. J. Hop, PhD,c Roos M. D.

Bernsen, PhD,b Hans de Groo


Patients with symptoms out of the season



VS PLACEBO Symptoms -28% (-39%) Medications - 24% (-48%) Efficacy and safety of 5grass-pollen sublingual immunotherapy tablets in pediatric allergic rhinoconjunctivitis

Wahn 2009

Efficacy and safety of sublingual immunotherapy with grass allergen tablets for seasonal allergic rhinoconjunctivitis.

Dahl et al, JACI 2006

VERSUS PLACEBO:

SYMPTOM REDUCTION
- 30%
MEDICATION REDUCTION
- 38%

634 PATIENTS !!!

	Primary sensitization	Cross-react	ivity		
Pollens				Primary sensitization	Cross-reactivity
Ragweed	Amb a 1			Timuly sensitization	
Mugwort	Art v 1, Art v 3	Art v 3	House dust mite	Der p 1, Der p 2	Der p 10
Parietaria	Par j 2	Par j 2	pyroglyphidae	Der f 1, Der f 2	
Russian thistle or saltwort	Sal k 1		Blomia tropicalis	Blo t 5	
Goosefoot or			Euroglyphus mannei	Eurm 2	
Lambs quarters	Che a 1		Lepidoglyphys destructo	•	
Plantain or Ribwort	Pla l 1		Cat	Fel d 1, Fel d 4	Fel d 2
Timothy	Phl p 1	Phl p 4			Fel d 4
	Phl p 5	Phl p 7	Dog	Can f 1, Can f 2,	Can f 3
	Phl p 6	Phl p 11		Can f 5	Can f 5
	-	Phl p 12	Horse	Equ c 1	Equ c 3
Bermuda grass	Cyn d 1	-	Alternaria alternata	Alta 1, Alta 6	Alt a 6
Birch	Bet v 1	Bet v 1	Aspergillus fumigatus	Asp f 1, Asp f 2, Asp f	Asp f 6
	Bet v 6	Bet v 2		3 Asp f 4, Asp f 6	
		Bet v 4			
Alder	Alng 1	Alng 1			
Oak	Que a 1	Que a 1			
Olive	Ole e 1	Ole e 2			
	Ole e 7	Ole e 7, Ole	e e 9		
	Ole e 9				
Japanese cedar,	Cry j 1Z				
Cypress	Cup a 1		C		
Plane tree	Pla a 1		Sastr	е,	
	Pla a 2		<i>C</i> 1.	E 411 -	2010
Latex	Hev b 1, Hev b 3, Hev b	Hev b 5	Clin	Exp Allergy	2010
	- TT. 1. 6	77. 1.6			

Hev b 6 Hev b 8

5, Hev b 6

GRASS

Phl p 1

Phl p 5

Phl p 6

Phl p 7 (profilin) Phl p 12 (CBP)

BIRCH

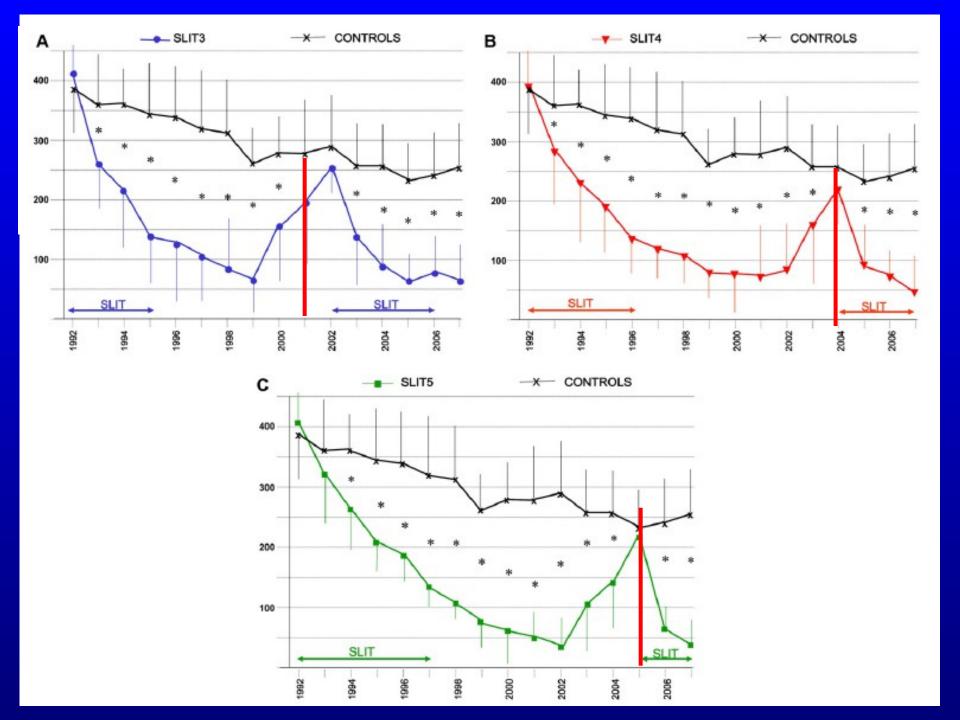
Bet v 1

Bet v 2 (profilin) Bet v 3 (CBP)

PARIETARIA

Par j 1

Par j 2


Par j 3 (profilin)

Molecular profiles of IgE to *Phleum pratense* in children with grass pollen allergy: Implications for specific immunotherapy

Salvatore Tripodi, MD,^a Tullio Frediani, MD,^b Sandra Lucarelli, MD,^b Francesco Macrì, MD,^b Giuseppe Pingitore, MD,^c Andrea Di Rienzo Businco, MD,^a Arianna Dondi, MD,^d Paola Pansa, MD,^b Giovanni Ragusa, MD,^b Riccardo Asero, MD,^e Diego Faggian, MSc,^f Mario Plebani, MD,^f and Paolo Maria Matricardi, MD^g Rome, Bologna, Paderno Dugnano, and Padua, Italy, and Berlin, Germany

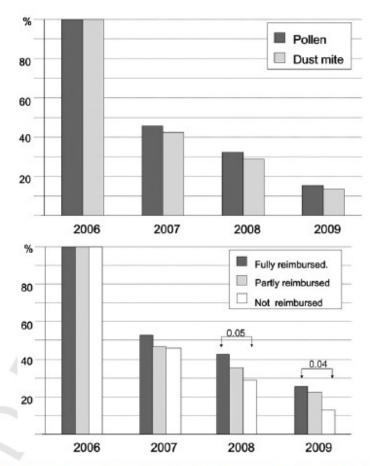
	Allergic rhinitis (n = 175)		Asthma (n = 103)		All (n = 200)*	
	No.	Percent	No.	Percent	No.	Percent
Age (y), mean ± SD	11.1	3.4	10.7	3.3	11.0	3.3
Male sex (no./total [%])	111	63.4	65	63.1	126	63.0
Atopic sensitization (SPT ≥3 mm)						
Phleum pratense	158	90.3	90	87.4	182	91.0
Wheal diameter 3-5 mm	44	27.8	29	32.2	20	11.0
Wheal diameter 6-10 mm	61	38.6	31	34.4	102	56.0
Wheal diameter >10 mm	70	44.3	43	47.8	60	33.0
Cynodon dactylon	126	72.0	67	65.0	141	70.5
Betula verrucosa	43	24.6	26	25.2	51	25.5
Cupressus arizonica	88	50.3	53	51.5	98	49.0
Platanus orientalis	53	30.3	33	32.0	63	31.5
Olea europaea	113	64.6	63	61.2	128	64.0
Parietaria judaica	75	42.9	44	42.7	83	41.5
Artemisia vulgaris	27	15.4	18	17.5	33	16.5
Plantago lanceolata	67	38.3	31	30.1	76	38.0
≥3 Pollens	103	58.8	59	57.3	117	58.5
Dermatophagoides pteronyssinus	87	49.7	57	55.3	100	50.0
Dermatophagoides farinae	92	52.6	62	60.2	106	53.0
Blattella germanica	20	11.4	15	14.6	26	13.0
Cat	42	24.0	27	26.2	48	24.0
Dog	48	27.4	31	30.1	58	29.0
Alternaria tenuis	57	32.6	38	36.9	63	31.5
Cladosporium herbarum	15	8.6	13	12.6	17	8.5
≥3 Indoor allergens	67	38.3	42	40.8	77	38.5

Evidence of adherence to allergen-specific immunotherapy

Gianenrico Senna^a, Erminia Ridolo^b, Moises Calderon^c, Carlo Lombardi^d, Giorgio W. Canonica^e and Giovanni Passalacqua^e

Table 3 Studies on compliance with sublingual immunotherapy			
Reference	No. of patients	Age	Compliance (%)
Marogna et al. [25]	319	Adults	80
Lombardi et al. [26]	86	Adults	75-97
Pajno et al. [24]	806	Children	79
Passalacqua et al. [27]	443	Adults/adolescents	76
Passalacqua et al. [28]	71	Children	85
Roder et al. [29**]	154	Adolescents	77

Current Opinion in Allergy and Clinical Immunology 2009, 9:544-548


Letter to the Editor

How adherent to sublingual immunotherapy prescriptions are patients? The manufacturers' viewpoint

To the Editor:

Adherence to prescriptions is crucial for all long-term treatments, and this is true also for sublingual immunotherapy (SLIT), which is self-managed at home by the patients themselves. In fact, in the case of SLIT, medical supervision is usually limited to control visits or to prescription renewals. Available postmarketing studies indicate that the compliance with SLIT ranges from 50% to 95%, depending on age and on duration of treatment.2 Nonetheless, the postmarketing surveys on compliance have an inherent limitation in that the observation itself can distort the results to some extent. In other words, when patients are aware that their compliance with treatment is recorded, they tend to be more adherent. Moreover, those studies assessed the adherence over limited periods, whereas SLIT should be continued for at least 3 years, according to recommendations. In everyday clinical practice, the general perception is that a large proportion of patients discontinues the prescribed SLIT, and this usually happens within the first year.

To address this latter aspect better, and to quantify the rate of discontinuations in real life, we collected the Italian sales figures from 2 large manufacturers (Stallergenes Italy, Milan, and ALK-Abelló Italy, Lainate, Milan), who kindly provided their data subdivided as per the 20 Italian administrative regions. It is to be noted that these manufactures account for more than 60% of the Italian immunotherapy market. To assess the discontinuation rates

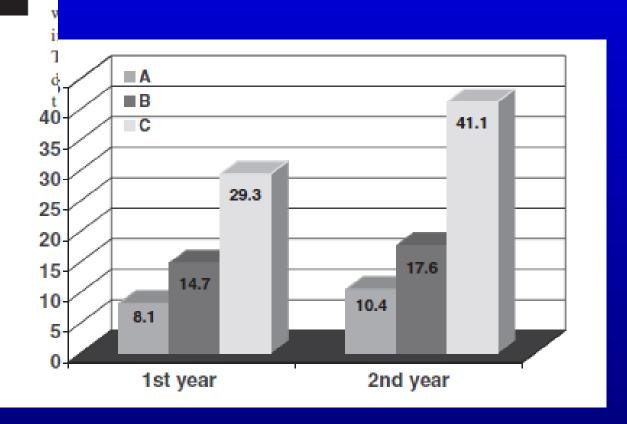


FIG 1. Percentages of SLIT treatments still ongoing at 1, 2, and 3 years after the initial prescription. *Upper panel*, Percentages for pollens and house dust mite SLITs. *Lower panel*, Percentages according to the reimbursement Q1 modality.

ALLERGY Net

Sublingual immunotherapy: adherence based on timing and monitoring control visits

D. Vita, L. Caminiti, P. Ruggeri,
G. B. Pajno*

The Consolidated Standards of Reporting Trials (CONSORT) Statement applied to allergen-specific immunotherapy with inhalant allergens: A Global Allergy and Asthma European Network (GA²LEN) article

Philippe J. Bousquet, MD, PhD, a* Moises A. Calderon, MD, PhD, b* Pascal Demoly, MD, PhD, ac* Désirée Larenas, MD, Giovanni Passalacqua, MD, ac* Claus Bachert, MD, PhD, f* Jan Brozek, MD, PhD, g* G. Walter Canonica, MD, ac* Thomas Casale, MD, bh Joao Fonseca, MD, PhD, ac* Ronald Dahl, MD, DrMedSci, stephen R. Durham, MD, b* Hans Merk, MD, ac* Margitta Worm, MD, ac* Ulrich Wahn, MD, ac* Montpellier, MD, PhD, ac* Montpellier and Villejuif, France, London, United

SCIT: 46 trials

CONSORT: 1 trial

Flowchart: 16 trials

Dropouts: 12 trials

Randomization: 16 trials

SLIT: 48 trials

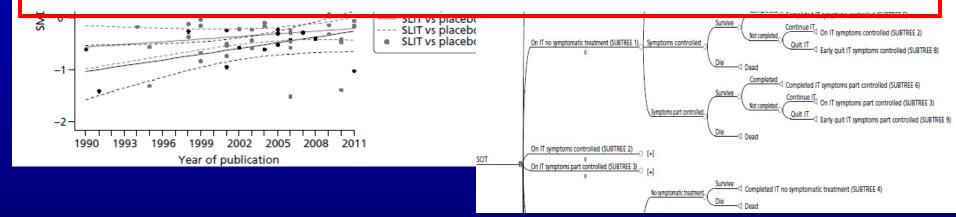
CONSORT: 3 trial

Flowchart: 20 trials

Dropouts: 16 trials

Randomization: 12 trials

HEALTH TECHNOLOGY ASSESSMENT


VOLUME 17 ISSUE 27 JULY 2013 ISSN 1366-5278

A systematic review and economic evaluation of subcutaneous and sublingual allergen immunotherapy in adults and children with seasonal allergic rhinitis

A Meadows, B Kaambwa, N Novielli, A Huissoon, A Fry-Smith, C Meads, P Barton and J Dretzke

Survive Quit IT Quit IT Survive Quit IT Survi

Results: Meta-analyses found statistically significant effects for SCIT and SLIT compared with placebo across a number of outcome measures and for the vast majority of subgroup analyses (type and amount of allergen, duration of treatment). There was less evidence for children, but some results in favour of SLIT were statistically significant. Indirect comparisons did not provide conclusive results in favour of either SCIT or SLIT. Economic modelling suggested that, when compared with symptomatic treatment (ST), both SCIT and SLIT may become cost-effective at a threshold of £20,000–30,000 per quality-adjusted life-year (QALY) from around 6 years, or 5 years for SCIT compared with SLIT (NHS and patient perspective).

CERTAINTIES - EVIDENCE

DOUBTFUL

UNMET NEEDS

UNKNOWN

BIOMARKERS

FOR RESPONDER (NON RESPONDER)?

Recommendations for appropriate sublingual immunotherapy clinical trials

Thomas B. Casale, MD, a G. Walter Canonica, MD, b Jean Bousquet, MD, Linda Cox, MD, Richard Lockey, MD, e Harold S. Nelson, MD, and Giovanni Passalacqua, MD Omaha, Neb, Genoa, Italy, Montpellier, France, Davie and Tampa, Fla, and Denver, Colo

TABLE III. Points to consider	for randomized	controlled trials in	
SLIT			

SLII	
Allergen vaccine	
Composition	Single allergen or mixtures
If mixture	Compatible allergens in liquid form with proven stability
Standardization	Defined based on major allergen content
Updosing regimen	Not required
Dose	~5 µg major allergen/d recommended
Patient selection	
Assess all sensitizations (monosensitization or polysensitization)	Panel of allergens using skin prick tests
Prove concordance of sensitization and symptoms because not all sensitizations are clinically relevant	Skin prick tests and serum-specific IgE Optional: allergen challenge
Assess severity of symptoms before SLIT	 Historical: moderate to severe symptoms with exposure in previous year Run-in (difficult to do for seasonal allergens) with low pretreatment symptoms
Report comorbidities	May be used in the analysis
Exclude patients who	•
received SIT within 5 y	
Study design	

- Randomized
- Double-blind
- · Placebo-controlled: appropriate predefined minimal symptom increase during pollen season

JACI, Oct 09

Rescue medication Standardized list Weighted medication score Total symptom score Combined symptom-medication score (preferred) For asthma: coprimary, FEV ₁ or peak expiratory flow		
Primary outcome • Total symptom score • Combined symptom-medication score (preferred) • For asthma: coprimary, FEV ₁ or peak expiratory flow	Rescue medication	 Standardized list
 Combined symptom-medication score (preferred) For asthma: coprimary, FEV₁ or peak expiratory flow 		 Weighted medication score
(preferred) ● For asthma: coprimary, FEV ₁ or peak expiratory flow	Primary outcome	 Total symptom score
 For asthma: coprimary, FEV₁ or peak expiratory flow 		 Combined symptom-medication score
expiratory flow		(preferred)
		 For asthma: coprimary, FEV₁ or peak
Secondary outcomes A Passus medications		expiratory flow
Secondary outcomes Rescue medications	Secondary outcomes	 Rescue medications
 Individual symptoms 		 Individual symptoms
 Visual analog scale 		 Visual analog scale
• QOL		• QOL
 Asthma control 		 Asthma control
 Symptom-free days 		 Symptom-free days
 Physician and patient rated clinical 		 Physician and patient rated clinical
global improvement		global improvement

REVIEW ARTICLE

Perspectives on allergen-specific immunotherapy in childhood: An EAACI position statement

M. A. Calderon¹, R. Gerth van Wijk², I. Eichler³, P. M. Matricardi⁴, E. M. Varga⁵, M. V. Kopp⁶, P. Eng⁷, B. Niggemann⁸, A. Nieto⁹, E. Valovirta¹⁰, P. A. Eigenmann¹¹, G. Pajno¹², A. Bufe¹³, S. Halken¹⁴, K. Beyer⁴ & U. Wahn⁴

¹Department of Allergy and Respiratory Medicine, Royal Brompton Hospital, Imperial Erasmus MC-University Medical Center, Rotterdam, The Netherlands; ³European Me Pneumology and Immunology, Charité Medical University, Berlin, Germany; ⁵Departn Division, Medical University Graz, Graz, Austria; ⁶Department of Allergology and Pneu Germany; ⁷Allergy Unit, Children's Hospital, Kantonsspital Aarau, Switzerland; ⁸Depar Cross Hospital Westend, Berlin, Germany; ⁹Pediatric Allergy and Pneumology Unit, C Clinic, Suomen Terveystalo AllergyClinic, Turku, Finland; ¹¹Division of Immunology an of Geneva, Geneva, Switzerland; ¹²Department of Pediatrics, Allergy Unit, University Experimental Pneumology, Ruhr-University Bochum, Bochum, Germany; ¹⁴Hans Chri Hospital, Odense, Denmark

To dte this article: Calderon MA, Gerth van Wijk R, Eichler I, Matricardi PM, Varga EM, Kopp Pajno G, Bufe A, Halken S, Beyer K, Wahn U. Perspectives on allergen-specific immunothera

Unmet needs of allergen-specific immunotherapy in children

- Optimal dose and dosing frequency of administration
- Frequency of side effects and safety
- Efficacy and safety in patients unresponsive to pharmacotherapy
- For SLIT: Drops vs. tablets
- Duration of treatment
- Long-term efficacy and safety
- Preventive capacity (asthma, new sensitizations)
- Identification of immunological biomarkers
- Definition of duration of disease before starting treatment (minimal age)
- Development of generally accepted primary outcome measures (i.e. symptom medication scores)
- Studies targeting children with moderate asthma
- Evaluating the effectiveness of allergen-specific immunotherapy in real life in allergic rhinitics with concomitant asthma, especially in terms of a steroid-sparing effect.
- Cost-effectiveness studies and pharmaco-economic aspects
- Developing strategies to enhance adherence

THANK YOU!

Contact us at canonica@unige.it passalacqua@unige.it

WAO, Chicago, Dec 2013