Drug-Induced Anaphylaxis in Latin American Countries

Edgardo José Jares, MD*, Carlos E. Baena-Cagnani, MD†, Mario Sánchez-Borges, MD‡, Luis Felipe C. Ensina, MD§, Alfredo Arias-Cruz, MD¶, Maximiliano Gómez, MD®, Mabel Noemi Cuello, MD®, Blanca Maria Morfin-Maciel, MD®, Alicia De Falco, MD®, Susana Barayazarra, MD®, Jonathan A. Bernstein, MD®, Carlos Serrano, MD®, Silvana Monsell, MD®, Juan Schuhl, MD**, and Ricardo Cardona-Villa, MD***, on behalf of “Latin America Drug Allergy Interest Group”* Buenos Aires, Cordoba, Salta, San Juan, La Plata, Argentina; Caracas, Venezuela; São Paulo, Brazil; Monterrey, Mexico City, Mexico; Cincinnati, Ohio; Cali, Medellín, Colombia; Montevideo, Uruguay

What is already known about this topic? Drugs are among the most common causes of anaphylaxis. Nonsteroidal anti-inflammatory drugs and antibiotics have been found as the most frequent inducers of drug-induced anaphylaxis, but there are some variations between countries.

What does this article add to our knowledge? The present study further supports nonsteroidal anti-inflammatory drugs as a main cause of drug-induced anaphylaxis and shows that anaphylaxis prophylaxis and treatment should be improved. Factors associated with drug-induced anaphylaxis may change according to the studied population.

How does this study impact current management guidelines? Dissemination of anaphylaxis guidelines among emergency department physicians in Latin American countries should be encouraged, to improve management of drug-induced anaphylaxis.

BACKGROUND: Information regarding the clinical features and management of drug-induced anaphylaxis (DIA) in Latin America is lacking.

OBJECTIVE: The objective of this study was to assess implicated medications, demographics, and treatments received for DIA in Latin American patients referred to national specialty centers for evaluation.

METHOD: A database previously used to compile information on drug-induced allergic reactions in 11 Latin American countries was used to identify and characterize patients presenting specifically with a clinical diagnosis of DIA. Information regarding clinical presentation, causative agent(s), diagnostic studies performed, treatment, and contributing factors associated with increased reaction severity was analyzed.

RESULTS: There were 1005 patients evaluated for possible drug hypersensitivity reactions during the study interval, and 264 (26.3%) met criteria for DIA. DIA was more frequent in adults and in elderly females (N = 129 [76.6%] and N = 30 [75%], respectively) compared with children and/or adolescents (N = 21 [42.9%], P < .01). Severe DIA was less frequent with underlying asthma (N = 22 vs 35 [38.6% vs 61.4%], P < .05) or atopy (N = 62 vs 71 [43% vs 59%], P < .01). Nonsteroidal anti-inflammatory drugs (NSAIDs) (N = 178 [57.8%]), beta-lactam antibiotics (N = 44 [14.3%]), and other antibiotics (N = 16 [5.2%]) were the most frequently implicated drug classes. Anaphylaxis was rated as severe in N = 133 (50.4%) and anaphylactic shock (AS) was present in N = 90 (34.1%). Epinephrine was only available online.

Conflicts of interest: M. Gómez has received research support from GlaxoSmithKline, Novartis, Merck Sharp & Dohme, Takeda, and Stallergenes; has received lecture fees from Schering Plough; and has received travel support from Sanofi, GlaxoSmithKline, and Novartis. The rest of the authors declare that they have no relevant conflicts.

Received for publication January 12, 2015; revised April 3, 2015; accepted for publication May 4, 2015.

*Allergy Unit, CMP S.A., Libra Foundation, Buenos Aires, Argentina
†Centro de Investigación en Medicina Respiratoria, Faculty of Medicine, Catholic University of Cordoba, Cordoba, Argentina
‡Allergy and Clinical Immunology Department, Centro Médico-Docente La Trinidad, Caracas, Venezuela
§Allergy, Immunology and Rheumatology, Federal University of São Paulo, São Paulo, Brazil
¶Centro Regional de Alergia e Imunologia Clínica, Hospital Universitario, Monterrey, Mexico
©Allergy and Asthma Unit, Hospital San Bernardo, Salta, Argentina
âAllergy and Immunology Department, Consultorios San Juan, San Juan, Argentina
&Allergy, Hospital Mocel, Mexico City, Mexico
¶Allergy and Clinical Immunology, Universidad Nacional de La Plata, La Plata, Argentina
©Allergy and Immunology, Nuevo Hospital San Roque, Córdoba, Argentina
âDepartment of Internal Medicine and Division of Immunology/Allergy Section, University of Cincinnati, Cincinnati, Ohio
®Allergy Unit, Fundación Valle del Lílí, Cali, Colombia
†Allergy Unit, Hospital Britanico, Montevideo, Uruguay
*Universidad de Antiquia, Medellín, Colombia

No funding was received for this work.
used in N = 73 (27.6%) overall, but in N = 70 (77.8%) of patients with AS.

CONCLUSION: In Latin American patients referred for evaluation of DIA, NSAIDs and antibiotics were implicated in approximately 80% of cases. Most of these reactions were treated in the emergency department. Epinephrine was administered in only 27.6% of all cases, although more frequently for AS. Dissemination of anaphylaxis guidelines among emergency department physicians should be encouraged to improve management of DIA. © 2015 American Academy of Allergy, Asthma & Immunology (J Allergy Clin Immunol Pract 2015; :)

Key words: Drug allergy; Epidemiology; Anaphylaxis; Epinephrine; Latin America

Anaphylaxis is defined as "a serious life-threatening generalized or systemic hypersensitivity reaction." It usually occurs suddenly after systemic exposure to an inducing substance. The diagnosis is likely when there is involvement of skin or mucosal tissue (eg, hives, angioedema), airway compromise (wheezing, dyspnea), and/or reduced blood pressure with or without associated complications (hypotonia, syncope) that is temporally related in onset (minutes to several hours) to a potential causative agent. Anaphylaxis is a protean condition as it can occur without mucocutaneous involvement, with the presence of 2 of the following features: cardiovascular, respiratory and/or gastrointestinal symptoms arising shortly after exposure to a potential inciting agent. Circulatory collapse and airway obstruction can be fatal.

The incidence of anaphylaxis in Europe and the United States has been estimated to range from 3 to 300 per 100,000 persons per year, with a lifetime prevalence of 0.05% to 2%. There have been reports that the incidence of anaphylaxis has increased in Australia, the United Kingdom, and the United States. Mulla et al reported an increase in anaphylaxis hospital discharges in New York state between 1996 and 2005, but not in Florida, suggesting that latitude may influence anaphylaxis incidence or diagnosis rates.

The most common cause of anaphylaxis according to some studies are hypersensitivity drug reactions (HDRs); HDRs have also been reported to be the most frequent cause of mortality due to anaphylaxis in New Zealand and Australia.

There are limited data on the epidemiology of drug-induced anaphylaxis (DIA) in Latin America, and most reports are case reports or case series focused on specific drugs or special situations such as perioperative anaphylaxis. Further studies are needed to confirm the previous findings and to add new knowledge to the field.

The aims of this work were to: (1) identify the drugs most commonly implicated in DIA reported in different Latin American countries; (2) describe the clinical presentation and diagnostic testing performed to confirm DIA, and (3) describe the treatment provided to these patients.

METHODS

A cross-sectional study to assess the prevalence and characteristics of DIA was conducted using the European Network of Drug Allergy questionnaire that was administered to clinicians to patients evaluated in 22 allergy units from 11 Latin American countries (Argentina, Brazil, Chile, Colombia, Cuba, Dominican Republic, Ecuador, Mexico, Paraguay, Uruguay, and Venezuela). Detailed methodology has been previously described. The study was conducted from December 2011 to July 2014. DIA was defined as a moderate or severe reaction that occurred less than 24 hours after an implicated drug administration associated with urticaria and/or angioedema (U/A), and if there were at least one of the following symptoms: respiratory (R) (cough, dysphonia, dyspnea, wheezing, rhinorrhea, sneezing, nasal obstruction), gastrointestinal (GI) (nausea/emesis, diarrhea, gastrointestinal cramps), and/or cardiovascular (CV) (tachycardia, hypotension, collapse, arrhythmia). Alternatively patients could have at least 2 of the following symptoms to meet the diagnosis of DIA: respiratory compromise, persistent gastrointestinal and/or CV symptoms. Patients with angioedema, dyspnea, and dysphonia without involvement of other organ and/or system was not considered anaphylaxis (probable angioedema with upper airway involvement).

Clinical characteristics of anaphylaxis, demographics, history of previous HDRs, atopic status, physician diagnosis of asthma, and anaphylaxis treatment, including shock management and use of epinephrine, were recorded. Atopy was defined as having a physician diagnosis of allergic conjunctivitis and/or rhinitis and/or asthma, food allergy, and/or atopic dermatitis.

A causal relationship with a specific drug was implicated based on the clinical history, temporal relationship between exposure, and onset of clinical manifestations. Confirmatory diagnostic evaluation according to the patient’s presentation and availability of procedures at each center (including skin prick and intracutaneous tests, provocation tests, and laboratory tests) was performed. Causal relation of the reaction to the suspected drug was categorized as certain, probable, possible, unlikely, and conditional, adapted from the World Health Organization Uppsala Monitoring Centre Causality Categories and the Argentinean Food and Drug National Agency (ANMAT).

Drugs were grouped according to an adaptation of the Anatomical Therapeutic Chemical classification of the World Health Organization Collaborating Centre for Drug Statistics Methodology.

Ethical considerations

This study encouraged researchers to adhere to their standard good clinical care approach used to evaluate patients with suspected DIA at all times. No additional interventions were performed on the patients other than those deemed appropriate by the clinical investigator for the management of the DIA reaction in question at each study site.

All personal information for each patient was de-identified. In addition, all clinical information was reported anonymously and was independently linked to a code (the patient number) only known by the clinical investigator at the site responsible for each patient.

The study was conducted according to the principles of the Declaration of Helsinki and was approved by the ethics committee of the Faculty of Medicine, University Hospital of the Universidad
TABLE I. Demographics of study subjects

<table>
<thead>
<tr>
<th>Overall</th>
<th>Children-adolescents (0-17 y)</th>
<th>Adults (18-59 y)</th>
<th>Elderly (60-93 y)</th>
<th>Adults/children-adolescents</th>
<th>Elderly/children-adolescents</th>
<th>Elderly/adults</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients n</td>
<td>264</td>
<td>49</td>
<td>175</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (y), mean</td>
<td>38.2</td>
<td>10.7</td>
<td>41</td>
<td>23.4</td>
<td>10</td>
<td>(25)</td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>79 (29.9)</td>
<td>28 (57.1)</td>
<td>41 (23.4)</td>
<td>10 (25)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>185 (70.1)</td>
<td>21 (42.9)</td>
<td>129 (76.6)</td>
<td>30 (75)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atopy, n (%)</td>
<td>144 (54.5)</td>
<td>28 (57.1)</td>
<td>104 (59.4)</td>
<td>12 (30)</td>
<td>.72 (ns)</td>
<td>.01</td>
</tr>
<tr>
<td>Rhinitis, n (%)</td>
<td>119 (45.1)</td>
<td>26 (53.1)</td>
<td>84 (48)</td>
<td>9 (22.5)</td>
<td>.56 (ns)</td>
<td><.01</td>
</tr>
<tr>
<td>Asthma, n (%)</td>
<td>57 (21.6)</td>
<td>16 (32.7)</td>
<td>36 (20.6)</td>
<td>5 (12.5)</td>
<td>.09 (ns)</td>
<td><.05</td>
</tr>
<tr>
<td>Food allergy, n (%)</td>
<td>20 (7.6)</td>
<td>4 (8.2)</td>
<td>14 (8)</td>
<td>2 (5)</td>
<td>.98 (ns)</td>
<td>.6 (ns)</td>
</tr>
<tr>
<td>Family history of allergy, n (%)</td>
<td>78 (29.5)</td>
<td>19 (38.8)</td>
<td>53 (30.3)</td>
<td>6 (15)</td>
<td>.22 (ns)</td>
<td><.05</td>
</tr>
</tbody>
</table>

Autónoma de Nuevo León, Mexico. The use of informed consents was exempted due to the low risk of the study (International Regulation 45 CRF 46.117 C and article 23 of the General Health Law and Research of Mexico).

Statistical analysis

OpenEpi software was used to analyze data. Nonnormally distributed quantitative variables were compared using the Mann-Whitney test and qualitative variables using the χ^2 test. All reported P values were based on 2-tailed tests; values less than .05 were considered statistically significant.

RESULTS

Among the 1005 HDRs evaluated in our database, there were 264 (26.3%) patients that met our diagnostic criteria for DIA. Patients with DIA had a mean age of 38.2 years (1-84) (Table I). Females more commonly experienced DIA across the adult (18-59 years old) and elderly (more than 59 years old) study populations (76.6% and 75%, respectively), whereas there was no gender predilection observed for the children and adolescent (0-17 years old) populations (adults and/or elderly vs children and/or adolescents, $P < .0001$). Patient-reported history of atopy was present in 54.5% of patients but was less frequent in elderly patients compared with children and/or adolescents and adults ($P < .01$ and <.001, respectively). Severe reactions were reported in 43% of atopic patients and 59% of nonatopic patients ($P < .01$). Interestingly, asthmatic patients experienced milder reactions (severe reactions: 38.6%) compared with nonasthmatic patients (severe reactions: 54.6%) ($P < .05$). A previous drug reaction history to at least one medication was present in 38.3% of patients, and a family history of allergy was present in 29.5% of patients. Of note, there were $N = 97$ (37%) of the cases that had received the implicated drug previously without reaction and $N = 48$ (18.3%) of the cases that had a previous HDR with the implicated drug and were still given that drug again. There was no difference in DIA severity between patients with a history of HDR or tolerance to the inciting drug (data not shown). Reactions to the causative agent occurred within the first hour after oral administration of the drug in 63.3% and after parenteral administration in 89.3% ($P < .0001$). The drug was administered parenteral in 36.8% of these cases.

Clinical presentation

Clinical characteristics of patients with DIA are summarized in Figure 1. The most frequent clinical presentations were U/A and respiratory symptoms (R) (86%). The most frequent R symptoms included dyspnea (73.5%), wheeze (28.8%), cough (36.7%), and dysphonia (25%); the most frequent GI symptoms were nausea vomiting (11.7%), and cramps and diarrhea (4.2%), whereas the most frequent CV symptoms were hypotension (31.8%), tachycardia (28.4%), and collapse (14.8%). Cardiovascular symptoms were more frequent in elderly patients (85%) compared with adults (45.7%) and children and/or adolescents (30.6%; $P < .0001$). Shock was present in 34.1% of patients and was more frequent in elderly patients than in adults and children and/or adolescents ($P = .01$ and .04, respectively).

Implicated drugs

A certain and probable causal relationship was attributed to drug groups as illustrated in Figure 2. The most frequently reported anaphylaxis inducers were nonsteroidal anti-inflammatory drugs (NSAIDs) in 57.8% of cases. Reactions to NSAIDs occurred more frequently in adults compared with elderly patients ($P < .05$). The culprit NSAIDs are summarized in Figure 3. Reaction to a single NSAID from one class with a previous HDR with the inciting drug (data not shown). Reactions to the causative agent occurred within the first hour after oral administration of the drug in 63.3% and after parenteral administration in 89.3% ($P < .0001$). The drug was administered parenteral in 36.8% of these cases.

Diagnostic testing performed

Tryptase levels were determined in only 8 patients (3%). Skin prick tests (SPT) to the inciting drug or to an alternative drug with similar pharmacologic activity ($n = 78$) were performed in 60 patients (22.7%) with positive test results in 33 cases (41.2%). Among the 78 SPT, beta-lactams accounted for 25.6%
Intracutaneous tests (n = 54) were performed in 30 patients (11.4%) and positive in 48.1% of cases (Table II).

In vitro specific IgE tests (n = 64) were performed for 33 patients (12.5%) and positive in 39.4% of cases (Table II). Specific IgE to beta-lactams were the most frequently ordered specific IgE diagnostic test (87.5%).

Intracutaneous tests (n = 54) were performed in 30 patients (11.4%) and positive in 48.1% of cases (Table II).

In vitro specific IgE tests (n = 64) were performed for 33 patients (12.5%) and positive in 39.4% of cases (Table II). Specific IgE to beta-lactams were the most frequently ordered specific IgE diagnostic test (87.5%).

A basophil degranulation test (n = 29) was performed in 17 cases (6.4%), and NSAIDs (51.7%), vitamins (24.1%), corticosteroids (6.9%), and beta-lactams (6.9%) were the most frequently tested drugs. A basophil activation test (n = 18) was performed in 14 cases (13 of 14 cases in one center in Mexico) (5.3%) (Table II).

Provocation tests (n = 149) (Table II) were performed in 113 cases (42.8%) with NSAIDs (63.7%), beta-lactams (8%), and non—beta-lactam antibiotics (7.4%) being the most frequently challenged drugs. More than half of the challenges (53.1%) were conducted with an alternative drug rather than the suspected drug to provide a safer alternative treatment for the patient (eg, etoricoxib in a patient with DIA induced by diclofenac). More than one suspected drug was present in 44.2% of the patients who underwent drug provocation. Provocation testing was positive in 31.5% of cases.

Treatment

The majority of patients 206 (78%) were treated in the emergency department (ED); 23 (8.7%) were hospitalized (9 patients admitted from ED), and 9 (3.5%) of them required admission to the intensive care unit. Treatment was administered by an allergist in 26 patients (9.8%) and by a general practitioner in 5 cases (1.9%). Reactions went untreated in 7 patients (2.7%) and patients self-medicated in 6 cases (2.3%). The treatments used for anaphylaxis are illustrated in Figure 4. Corticosteroids (72.7%) and antihistamines (75.8%) were the most frequent prescribed therapies. Epinephrine was used in only 27.6% of patients. Epinephrine was administered in 39.2% of patients experiencing CV symptoms compared with 15.2% of cases when these symptoms were absent (P < .00001) but was administered in 77.8% of patients experiencing intravascular collapse. Elderly patients received epinephrine more frequently than adults (P < .01) and children and/or adolescents (P < .05).

DISCUSSION

This study is an extension of an earlier study that reported the prevalence and characteristics of HDRs evaluated and treated at 22 medical centers located in 11 Latin American countries.20 The focus of this analysis was to specifically assess patients experiencing DIA.21 Similar to previous studies, we found a predominance of DIA reactions in adult and elderly female patients and not in children and/or adolescent patients.16,28-30 Other investigators have reported similar findings in DIA associated with perioperative anaphylaxis.18
The present study did not identify any specific host risk factors for DIA. On the contrary, asthmatic and atopic patients in this study presented with less severe DIA reactions. In contrast to our findings, González Pérez et al. found a 2-fold and 3.3-fold greater risk of anaphylaxis in nonsevere and severe asthmatics, respectively, compared with patients without asthma. They also found that atopic dermatitis was associated with a significantly greater risk of anaphylaxis within their no asthma cohort study group. Other studies also reported that asthma, especially if severe or uncontrolled, was a risk factor for having more severe anaphylactic reactions.

However, Banerji et al. in a retrospective analysis of 716 patients with a visit to an ED and/or hospitalization for DIA, found that patients with asthma, allergic rhinitis, and eczema

TABLE II. Diagnostic test performed

<table>
<thead>
<tr>
<th></th>
<th>Prick test</th>
<th>Intracutaneous test</th>
<th>Specific IgE</th>
<th>BDT</th>
<th>BAT</th>
<th>Provocation test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>neg</td>
<td>pos</td>
<td>neg</td>
<td>pos</td>
<td>neg</td>
<td>pos</td>
</tr>
<tr>
<td>Beta-lactams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amoxicillin</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>Penicillin G</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>Penicillin V</td>
<td></td>
<td></td>
<td>12</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minor determinants</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major determinants</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ampicillin</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Cephalosporin*</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>No beta-lactams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clarithromycin</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Lincomycin</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Levofoxacin</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Nalidixic acid</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>NSAIDs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dipyrone</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Acetaminophen</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Diclofenac</td>
<td>2</td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Ketoprofen</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Aspirin</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Ibuprofen</td>
<td>1</td>
<td></td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Meloxicam</td>
<td></td>
<td></td>
<td>1</td>
<td>23</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Other NSAIDs†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Local anesthetics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Lidoicare</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Bupivacaine</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Muscle relaxants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Succinylcholine</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rocuronium</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atracurium</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vecuronium</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General anesthetics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propofol</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiamine</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Pyridoxine</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cyanocobalamin</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metiprednisone</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Betamethasone</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Fluticasone</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Others</td>
<td>9</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

BAT, Basophil activation test; BDT, basophil degranulation test; NSAIDs, nonsteroidal anti-inflammatory drugs.

*Cephalosporin: cefuroxime, ceftriaxone, cefotaxime, cefazoline.

†Other NSAIDs: etoricoxib, ketorolac, nimesulide, celecoxib, naproxene, lysine clonixinate.
compared with patients without these conditions did not differ with respect to the severity of the reaction, location of treatment (ED vs hospital inpatient), or their management. Aun et al. investigated 117 patients with DIA and found a high frequency of atopy and asthma in their population, but the personal history of atopy and asthma was not associated with severity of the drug reaction. Faria et al. also found in their study of 313 patients with DIA that atopy and asthma were not risk factors for anaphylaxis. Therefore, given our findings and those of several other independent investigators, the presumption that atopic predisposition contributes to a more severe allergic drug reaction requires further investigation to better understand host risk factors for HDRs and more specifically DIA.

More than 15% of the patients in this study experienced a previous HDR with the same drug. Aun et al found that a greater proportion of previous reactions were to the drug involved in the current reaction or to a drug from the same class and/or group. These prevalent severe DIA reactions emphasize the importance of educating physicians about avoiding the use medications primarily to NSAIDs, and slightly more than 30% of DIA elicited provocation tests (DPTs) over other diagnostic approaches. Drug provocative tests (DPTs) over other diagnostic approaches. Drug provocative testing was performed in more than 40% of cases primarily to NSAIDs, and slightly more than 30% of DPT elicited positive reactions. The small percentage of positive provocative tests might be related to the fact that slightly more than half of DPTs were performed with a different drug from that involved in the DIA. Concern about patient safety in this group of serious HDRs may explain this finding, which was usually done to offer an alternative therapeutic option for the patient. Additionally, more than 40% of the patients challenged had more than one suspected drug reactions that could have further lowered the percentage of total positive results for provocation testing. Different DPT procedures were used in different centers, and this fact emphasized the need of standardized procedures for assessing immediate and delayed type drug hypersensitivity reactions in Latin America.

Epinephrine is considered the first drug of choice for the treatment of moderate-to-severe anaphylaxis. In contrast with current recommendations, epinephrine was used in less than 30% of anaphylactic reactions and in approximately 40% of cases when there was CV involvement. Elderly patients received epinephrine more frequently that was probably related to this group having a greater degree of CV involvement.

In general, anaphylaxis is undertreated and among the elderly in the United States, Latin America, and other regions of the world. The use of corticosteroids and antihistamines in each study for which data are available was notably higher compared with rates of epinephrine use, even when the diagnosis of
anaphylaxis was made at the time of treatment. This raises concerns as to whether clinicians are knowledgeable about epinephrine being the treatment of choice for DIA and that corticosteroids and antihistamines are not recommended as first-line therapies for anaphylaxis. The low frequency of epinephrine use in anaphylaxis treatment is common in studies from Latin America as well as other regions of the world. In the study by Banerji et al., only 8% of patients with DIA treated in the ED received epinephrine. Other investigators reported a higher rate of epinephrine use for DIA (Faria et al., 47% and Pumphrey et al., 62%). Drost and Narayan found that a high proportion of hospital physicians were not knowledgeable regarding current recommendations for anaphylaxis treatment. Because most of these reactions are typically treated in EDs, dissemination of anaphylaxis guidelines in this group of physicians should be encouraged.

The strengths of this study are the use of a validated standardized clinical questionnaire in addition to the specific procedures used by each participating center to confirm the diagnosis of HDRs. Furthermore, the limited time frame from the drug reaction to its reporting (1 year) minimized the potential for recall bias.

A limitation of this study is that only patients referred to an allergist were assessed and enrolled. In the study of Banerji et al., in the United States, the authors found that only 14% of the patients had any allergist and/or immunologist follow-up in the subsequent year, even after having an episode of DIA requiring treatment in the ED or hospitalization. There is also a potential for population bias as well as treatment and reporting differences between sites. Therefore, the present findings may not be truly generalizable as the population analyzed may not reflect the true incidence or prevalence of DIA across all medical communities in Latin America. Furthermore, there was no comparative control group used in this analysis. It is also likely that only the most severe and/or complex cases were referred to an allergy clinic further contributing to selection bias. Interestingly, Banerji et al. found that patients presenting with DIA and a concomitant allergic condition were more likely to see an allergist or immunologist compared with DIA patients without a concomitant allergic condition.

In summary, this study identified patients with DIA using a validated and standardized questionnaire in 11 Latin American countries and describes the main features of diagnostic testing and treatment performed by the participating centers. In patients with DIA in Latin America, NSAIDs and antibiotics were implicated in approximately 80% of cases. Most of these reactions were treated in the ED. Epinephrine was administered in only 27.6% of all cases, although more frequently for anaphylactic shock. The results of this study emphasize the need to improve dissemination and implementation of anaphylaxis guidelines to primary care and ED physicians in Latin American countries.

Acknowledgment
This article is in memoriam of Prof. Dr. Carlos E. Baena-Cagnani.

REFERENCES

27. Dean AG, Sullivan KM, Soe MM. OpenEpi: open source epidemiologic sta-

tistics for public health, version 2.3, updated May 20, 2009. Available from:

47. Renaudin J-M, Beaudouin E, Ponvert C, Demoly P, Monereit-Vautrin DA. Se-

51. Silva CH, Giugliani ERJ. Consumption of medicines among adolescent stu-

52. Sánchez-Borges M, Capriles-Hulett A, Caballero-Fonseca F. Risk of skin re-

μg/L: retrospective characterisation of astology, severity and adherence to National Institute of Health and Cure Excellence (NICE) guidelines for
serial tryptase measurements and specialist referral. J Clin Pathol 2014;67:
614-9.

55. Campbell RL, Li JT, Nicklas RA, Sadosty AT. Emergency department diag-

58. Pumphrey R. Anaphylaxis: can we tell who is at risk of a fatal reaction? Curr
