Asthma Phenotypes, Heterogeneity and Severity: The Basis of Asthma Management

Eugene R. Bleecker, MD
Professor and Director, Center for Genomics & Personalized Medicine Research
Professor, Translational Sciences
Thomas H. Davis Professor of Medicine
Wake Forest School of Medicine
Winston-Salem, NC
Translational Research and Personalized Medicine in Asthma

- Team Science that integrates disease heterogeneity (phenomics), genomics, functional biology and individualized therapeutics

- These approaches are critically important to the effective development of “biologic” therapies

- This approach is a departure from “few drugs treat all” approach and tailors therapies to individual patients
Examples of Stratified (Personalized) Approaches

- Disease heterogeneity and asthma severity phenotypes

- *Pulmonary function and asthma severity*

- *Early onset Th2 phenotypes and severity*
Gene-Environment Interactions in Susceptibility and Severity of Asthma

Genetics
- Susceptibility:
- Associated Phenotypes: (atopy, BHR)
- Expression and Progression:
 - Severity, Pharmacogenetics

Environment / Epigenetics
- Prenatal influences (prematurity), allergens, respiratory infections, tobacco smoke, air pollutants, diet, lung development etc.

Early Intermittent Asthma

Chronic Persistent Progressive
- (reversible and irreversible changes in lung structure and function)
- Disease Heterogeneity & Severity
Asthma is a Heterogeneous Disease

Some Important Issues:

• Are there phenotypes of persistent bronchial inflammation?
 - Are some associated with airways remodeling?
 - Is there an exacerbating phenotype?

• Is severity determined by poor response to medications?
 - Are there biochemical/biologic mechanisms?
 - Are there pharmacogenetic interactions?

• What are the associations between nonsmoking asthma with COPD as well as smoking asthma and COPD?
Characterizing Asthma Heterogeneity Phenotypes (Hypothesis) Based

- Age of Onset
- Atopic/Allergic
- Shorter vs Longer Disease Duration
- Elderly
- Gender
- Ethnicity
- Obesity
- Exacerbations
Characterizing Asthma Heterogeneity

Phenotypes (Hypothesis) Based

- **Inflammatory**
 - Eosinophilic
 - Neutrophilic
 - Mast Cell
 - Combinations as well as other cellular/morphologic

- **Physiologic**
 - Sinusitis/Upper Airways
 - Small Airways Disease
 - Fixed Airways Obstruction (Remodeling)

- **Pharmacologic**
 - Corticosteroid Resistance
 - Pharmacogenetic
Severe Asthma Research Program (SARP)

- **NHLBI funded 5 (now 10) year program to investigate the pathobiology of severe asthma**

- **Eight individual R01 awards**
 - Brigham and Women’s Hospital
 - Imperial College, London
 - University of Pittsburgh
 - University of Texas-Galveston
 - Cleveland Clinic
 - University of Virginia
 - Emory University
 - University of Wisconsin
 - Wake Forest University
 - Washington University
 - Elliot Israel, M.D.
 - K. Fan Chung, M.D.
 - Sally E. Wenzel, M.D.
 - William J. Calhoun, M.D.
 - Serpil C. Erzurum, M.D.
 - Ben Gaston, M.D.
 - W. Gerald Teague, M.D.
 - William W. Busse, M.D.
 - Eugene R. Bleecker, M.D.
 - Mario Castro, M.D.
Subject Characterization

- Staff administered questionnaires
- Phlebotomy for DNA, serum IgE, blood eosinophils
- Atopy skin testing
- Pulmonary function assessment
 - Bronchodilator reversibility
 - Airway hyperresponsiveness to methacholine
- Collection of noninvasive biomarkers
 - Exhaled nitric oxide
 - Exhaled breath condensate
 - Hypertonic sputum induction
- Investigative bronchoscopy (subset)
 - Bronchoalveolar lavage
 - Endobronchial brushings and biopsies
Daily Asthma Symptoms

* all groups differ, † severe group differs from others

Moore et al. JACI 2007; 119:405-13
Health Care Utilization

SEVERE, (n=407)
MODERATE, (n=113)
MILD, (n=320)

ER
Hosp
ICU
Vent
Past 12 months
Lifetime (Ever)

† severe group differs from others (p<0.0001)

MILD, (n=320)
MODERATE, (n=113)
SEVERE, (n=407)

SARP
4/2008
Subject Characteristics: SARP

<table>
<thead>
<tr>
<th>Demographics</th>
<th>Mild (n=320)</th>
<th>Moderate (n=113)</th>
<th>Severe (n=407)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Age (yrs)</td>
<td>29</td>
<td>38</td>
<td>38</td>
<td><0.0001‡</td>
</tr>
<tr>
<td>Age of asthma onset (yrs)</td>
<td>12</td>
<td>17</td>
<td>14</td>
<td>0.005‡</td>
</tr>
<tr>
<td>Asthma duration (yrs)</td>
<td>17</td>
<td>21</td>
<td>24</td>
<td><0.0001*</td>
</tr>
<tr>
<td>Gender (% females)</td>
<td>69%</td>
<td>61%</td>
<td>62%</td>
<td>NS</td>
</tr>
<tr>
<td>Race (% Caucasian)</td>
<td>65%</td>
<td>66%</td>
<td>60%</td>
<td>NS</td>
</tr>
</tbody>
</table>

* all groups differ, † severe group differs from others, ‡ mild group differs from others
Physiology and Biomarkers

<table>
<thead>
<tr>
<th></th>
<th>Mild (n=320)</th>
<th>Moderate (n=113)</th>
<th>Severe (n=407)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline Lung Function</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEV1% predicted</td>
<td>94</td>
<td>66</td>
<td>65</td>
<td><0.0001†</td>
</tr>
<tr>
<td>FVC % predicted</td>
<td>100</td>
<td>80</td>
<td>80</td>
<td><0.0001†</td>
</tr>
<tr>
<td>FEV1/FVC %</td>
<td>80</td>
<td>68</td>
<td>66</td>
<td><0.0001†</td>
</tr>
<tr>
<td>Best Lung Function</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEV1% predicted</td>
<td>103</td>
<td>80</td>
<td>80</td>
<td><0.0001†</td>
</tr>
<tr>
<td>FVC % predicted</td>
<td>105</td>
<td>91</td>
<td>93</td>
<td><0.0001†</td>
</tr>
<tr>
<td>Max % change in FEV1</td>
<td>11</td>
<td>19</td>
<td>22</td>
<td><0.0001†</td>
</tr>
<tr>
<td>PC20 Methacholine (log)</td>
<td>.18</td>
<td>-.05</td>
<td>-.07</td>
<td>0.0004‡</td>
</tr>
<tr>
<td>Blood eosinophils (log)</td>
<td>-.70</td>
<td>-.56</td>
<td>-.66</td>
<td>NS</td>
</tr>
<tr>
<td>Serum IgE (log)</td>
<td>2.0</td>
<td>2.1</td>
<td>2.1</td>
<td>NS</td>
</tr>
<tr>
<td>≥ 1 positive skin test (%)</td>
<td>79%</td>
<td>77%</td>
<td>63%</td>
<td>0.0007†</td>
</tr>
</tbody>
</table>

* all groups differ, † severe group differs from others, ‡ mild group differs from others
Mild, Moderate, and Severe:
Is this the best we can do?
Phenotypes of Severe Asthma: Biased and Unbiased Approaches

- “Hypothesis Based”: (Age of Onset, Allergic, Eosinophilic, Exacerbations etc)

- “Model Free”: Cluster Approaches
 - Haldar et al AJRCCM (2008)
 - Weatherall et al ERJ (2009)
 - SARP NHLBI – Moore et al AJRCCM (2010)
Adapted from Haldar P. et al. AJRCCM. 2008
Perform an unbiased multivariate cluster analysis to identify asthma groups who share similar phenotypic profiles and to define asthma heterogeneity and severity.
Distribution of Variables

Composite variables | Objective Data

34 Total Variables, equally weighted

- PFTs: Baseline, Max
- Demos: Race, Gender, Ages
- Atopy; Skin tests
- Meds
- Triggers: Infxn, ASA, Allergy
- Sxs: Activity level
- HCU: Past 12 months
- Family Hx: Parents, Sibs
- Smoke Exposure
- Hormones
- PMH: GERD, HTN

Moore et al. 2010 AJRCCM
Dendogram

Wald’s minimum-variance hierarchical clustering method

Moore et al. 2010 AJRCCM
726 Subjects in Cluster Analysis

Cluster 1 (n=110)
- Cluster 1 (n=110)
- Cluster 2 (n=321)

Cluster 2 (n=380)

Cluster 3 (n=236)
- Cluster 3 (n=59)
- Cluster 4 (n=120)
- Cluster 5 (n=116)
- Cluster 6 (n=31)

Moore et al. 2010 AJRCCM
Asthma Cluster Analysis: 5 Clusters

1. Mild Allergic Asthma
 - Early onset asthma (EOA); Normal lung function; atopic <= 2 Controller (medication use); Minimal Health Care Utilization (HCU): decreased sputum eosinophils (Eos)

2. Mild-Moderate Allergic Asthma
 - Most common cluster; EOA; Borderline normal FEV1 but reverses to normal; Atopic; <= 2 Controllers; Very low HCU, but some oral steroid bursts (OCS); (decreased EOS)

3. MoreSevere Older Onset Asthma
 - Older; Late onset (LOA); higher BMI; Less atopic; Moderately low FEV1 with some reversibility; Higher dos ICS; > 3 Controllers, but despite this more OCS bursts (increased sputum EOS)

4. Severe Variable Allergic Asthma
 - EOA; 53%; Severely decreased FEV1, but very reversible to near normal; Atopic OCS; "Variable" with need for frequent OCS; High beta agonist use; HCU and global symptoms (GS): (increased EOS)

5. Severe Fixed Airflow Asthma ("COPD similarities")
 - Older; (longest duration); 63% female; Less atopic; Severely decreased FEV1 less reversibility; On OCS; higher BMI; more GERD-HTN; High HCU, Beta use & GSS; (increased PMN, EOS)
<table>
<thead>
<tr>
<th>Cluster</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mild Allergic Asthma
 Early onset asthma (EOA); Normal lung function; atopic <= 2 Controller (medication use); Minimal Health Care Utilization (HCU): decreased sputum eosinophils (Eos)</td>
</tr>
<tr>
<td>2</td>
<td>Mild-Moderate Allergic Asthma
 Most common cluster; EOA; Borderline normal FEV1 but reverses to normal; Atopic; <= 2 Controllers; Very low HCU, but some oral steroid bursts (OCS); (decreased EOS)</td>
</tr>
<tr>
<td>4</td>
<td>Severe Variable Allergic Asthma
 EOA; 53%; Severely decreased FEV1, but very reversible to near normal; Atopic OCS; ”Variable” with need for frequent OCS; High beta agonist use; HCU and global symptoms(GS): (increased EOS)</td>
</tr>
</tbody>
</table>
Asthma Cluster Analysis: 5 Clusters

3 MoreSevere Older Onset Asthma

- Older; Late onset (LOA); higher BMI; Less atopic; Moderately low FEV1 with some reversibility; Higher dos ICS; > 3 Controllers, but despite this more OCS bursts (increased sputum EOS)

5 Severe Fixed Airflow Asthma (“COPD similarities”)

- Older; (longest duration); 63% female; Less atopic; Severely decreased FEV1 less reversibility; On OCS; higher BMI; more GERD.HTN; High HCU, Beta use & GSS; (increased PMN, EOS)
Is There a Cluster 6?

<table>
<thead>
<tr>
<th></th>
<th>“5”</th>
<th>“6”</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>85</td>
<td>31</td>
</tr>
<tr>
<td>Race (%CC/AA/Oth)</td>
<td>69/18/13</td>
<td>65/26/10</td>
</tr>
<tr>
<td>Age of asthma onset (yrs)</td>
<td>23</td>
<td>15</td>
</tr>
<tr>
<td>Gender (% female)</td>
<td>62</td>
<td>65</td>
</tr>
<tr>
<td>Asthma duration</td>
<td>30</td>
<td>27</td>
</tr>
<tr>
<td>BMI</td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td>Baseline FEV₁ pp (%)</td>
<td>43</td>
<td>45</td>
</tr>
<tr>
<td>Baseline FVC pp(%)</td>
<td>59</td>
<td>62</td>
</tr>
<tr>
<td>FEV₁/FVC(%)</td>
<td>57</td>
<td>58</td>
</tr>
<tr>
<td>MAX FEV₁ pp(%)</td>
<td>55</td>
<td>65</td>
</tr>
<tr>
<td>Fev₁ pp diff (%reversibility)</td>
<td>12</td>
<td>19</td>
</tr>
<tr>
<td>IgE (GM)</td>
<td>93</td>
<td>115</td>
</tr>
</tbody>
</table>

Moore et al. AJRCCM 2010;181:315-323
Relationship of Guideline Asthma Severity Classification and Cluster Assignment (Clusters 1-5)

Moore et al. AJRCCM 2010
Asthma Cluster Assignments Do Not Agree with NAEPP EPR-3 Definitions of Asthma Severity

- Mild persistent asthma
- Moderate persistent asthma
- Severe persistent asthma

Discriminant Variables for Cluster Assignment (Clinical)

• Demographics
 – Sex
 – Age of Asthma Onset
 – Asthma Duration

• Pulmonary Function
 – Baseline (drug withheld)
 • FEV$_1$ pp
 • FVC pp
 • FEV$_1$/FVC %
 – Maximum (post bronchodilator)
 • FEV$_1$ pp
 • FVC pp
 • % change in FEV$_1$

• Medication
 – Frequency of beta agonists use
 – Dose of corticosteroids
Important Questions About the Cluster Analyses

Do these phenotypic subgroups have different genetic or molecular phenotypes (biomarkers)?

Do these subgroups respond the same or differently to current and future (biologic) therapeutic regimens?

What are the implications of overlapping phenotypes with COPD in nonsmoking asthma?
How well do sputum cell counts characterize asthma severity?
Identifying Phenotypic Subgroups of Subjects with Asthma:

Can Less Invasive Biomarkers Predict Airway Inflammation?

(SARP)
Summary

Subjects with asthma stratified by sputum granulocytes show significant differences in lung function and healthcare utilization.

Subjects with asthma stratified by blood eosinophils show some differences in lung function and atopic measures, but no associations with healthcare utilization.

FeNO, blood eosinophils and IgE do not accurately predict sputum eosinophils; additional criteria do not improve predictive value or accuracy.

Both sputum eosinophils and neutrophils are important for associations with lung function and healthcare utilization.
Examples of Stratified (Personalized) Approaches

- Disease heterogeneity and asthma phenotypes
- Pulmonary function and asthma severity
- Early onset Th2 phenotypes and severity
Bronchial Biopsy Immunostaining with Anti-IL6 Receptor

vascular endothelium

epithelium

airway smooth muscle
IL6R and Lung Function in Severe Asthma

• Relationships of gene variation, serum IL6R levels and decreased lung function

• Evidence for IL6R in bronchial biopsies

• New data from epithelial cell gene expression (NHLBI GO grant) shows correlation of increased IL6R RNA expression with decreased FEV1

Question: Should available anti-IL6R therapies be evaluated in specific severe asthma phenotypes?
Lung Function: Summary

- Will this additive genetic approach be useful to identify patients with at risk asthma in early life for specific therapeutics interventions?

- Additional studies are needed for replication and longitudinal outcomes (SARP III)
Examples of Stratified (Personalized) Approaches

- *Disease heterogeneity and asthma phenotypes*

- *Pulmonary function and asthma severity*

- *Early onset Th2 phenotypes and severity*
T helper 2 (Th2) Pathway in Asthma
Rational Therapeutic Targeting in Patients with Relevant IL4/IL13 Pathway Variation
Genomic Approaches in Severe Asthma

- Genome Wide (GWAS)
- COMPREHENSIVE PHENOTYPE
- EXPRESSION DATA
 - Epithelial cells
 - BAL cells (Macrophages)
- SEVERITY and SUSCEPTIBILITY LOCI
- EPIGENETICS
- Gene Expression Profiles
- GENOMIC ANALYSIS and SYSTEMS BIOLOGY
- NEW MOLECULAR PHENOTYPES & TARGETS
 - Inflammatory Signatures
 - Epithelial cells
 - BAL cells (Macrophages)
- Deep Sequencing
- Proteinomics Metabolomics
Advantages of Personalized Medicine: Everyone Can Win

• **Patients:** Identify the right drug for the right patient at the right time with improved compliance and better outcomes

• **Physicians:** More choices and more specific therapies

• **Government/Payers:** Better outcome driven return on investments

• **Regulators:** Increased confidence to approve earlier (licensing)

• **Pharma:** Better investment strategies for novel therapies