New Horizon Session #3 Nanomedicine Applications for Allergy and Vaccines

Shyam S. Mohapatra, MS, PhD, FAAAAI

Vice Chair of Research, Department of Internal Medicine Distinguished Professor and Director Div. of Translational Medicine Nanomedicine Research Center USF College of Medicine & JAH VA Hospital, Tampa, Florida <u>smohapat@health.usf.edu</u>

World Allergy Congresss, Cancun, Mexico December 4, 2011

Relevant Disclosures

- Current Support:
 - NIH-NCI (1RO1CA152005-01)
 - NIH-NHLBI (1P30HL101265-01)
 - NIH (1R41CA139785-01A1)
 - ONR (N00014-09-1-1008)
 - VA Merit Review (1101BX000954-01A1)
 - VA Research Career Scientist Award
 - FL Biomed. Res. Foundation (09BW-07)
- Intellectual Property
 - Co-inventor (10 patents-USF & ~12 pending),
- Co-founder & Chairman of the Board (Consultant)
 - TranGenex Nanobiotech Inc

Lung Disease Burden

- Lung Cancer (2011): Estd New cases: 221,130; Deaths: 156,940
- An estd 24 million US adults have COPD
 - 12 million physician-diagnosed and 12 undiagnosed.
 - Past Year Morbidity: chronic bronchitis : 9.9 million emphysema: 4.9 million
 - Past year Mortality: bronchitis- 667, emphysema- 12,790 other chronic lower respiratory diseases (excluding asthma): 111,020
- An estd. 23 million individuals have asthma
 - 12 million of them experienced at least one asthma attack during the survey year.
- Approx. 30,000 people have cystic fibrosis
 - 1 in 3,000 babies are born with the disease;
- ~40,000 infants and 150,000 adults have respiratory distress syndrome
- ~ 12 million persons have obstructive sleep apnea

What is Nanomedicine?

Challenges in drug delivery to the lung

Ultrasonic Nebulizers

Lungs expel materials reducing efficiency

- Patients <u>need to inhale correctly</u>
- Drugs need to get into deep lung which they do not
- Payload versatility needs to be increased
- Particles should range from 1-3 µm for optimal deposition/ delivery
- Aerosol systems deliver <u>only 10-30%</u> of the dispensed drug

MDIs

DPIs

- Aerosol systems deliver <100 µg of drug per puff (mg/dose needed)</p>
- Inhalers often impart a <u>stigma to the user</u> (especially young people)

Nanomedicine

Nanotechnology can change the entire healthcare scene

Polymeric Nanoparticles: Vehicles for Drug Delivery

Chibisan is a modified carbohydrate polymer derived from the Chibisan is a modified carbohydrate polymer derived from the Chibisan is a modified carbohydrate polymer derived from the Chibisan is a modified carbohydrate polymer derived from the String Crab Square Shellfish wastes from food processing Decaledification in dulue aqueous MeCH solution Decolorization in 0.5% RMm04 aq. and Crabic acid aq. or sumshine Chitin Decolorization in 0.5% RMm04 aq. and Crabic acid aq. or sumshine Chitin Deceetylation in hot concentrated NaCH solution (40-50%) Chitosan $f_{HO} - f_{HO} + f_{HO$

Targeted delivery

- Lower dosage
- Non-invasive
- Long shelf-life
- Cost-effective

AFM Day 1 Day 3 Day 3 Day 7 Day 7 Control

Lung Sections

- A natural biocompatible cationic polysaccharide from crustacean shells,
- Slowly biodegradable & Nuclease resistant
- Increases transcellular and paracellular transport across mucosal epithelium (mucosal gene delivery)
- Immunostimulatory & Anti-microbial
- Anticoagulant & wound-healing
- Non-toxic, non-hemolytic & Safe
- Cost-effective

What are some of the examples of potential applications to allergy and asthma?

Thiolated chitosan nanoparticles enhance anti-inflammatory effects of intranasally delivered theophylline

50

Lee et al Respir Res., 2007

How can NANOTECHNOLOGY help develop novel vaccine for therapies to decrease severity of RSV?

Nanoparticle-complexed siNS1 Exhibits Antiviral Activity In Vivo

Zhang et al, Nature Medicine 2005

- siNS1 Nanoparticles
 Reduced RSV replication
- Rx with siNS1 nanoparticles before or after infection with RSV showed
 - decreased virus titers
 - decreased inflammation and AHR.
- human dendritic cells, upon RSV infection, produced
 - elevated type-1 IFN and
 - induced differentiation of naive CD4+ T cells to T helper type 1 (TH1) cells.

NPRA Signaling: A New Target for anti-inflammatory Target

WT (+/+) NPRC -/-

DNAs:

- pNPRAi (pNP73102)
- siNPRA/psiNPRA
- Peptide:
 - KP73-102
 - VD
 - Anantin
- Small molecule:
 - Isatin
 - Isatin-derivatives

Wang et al Mol Cancer. 2011; Zhang et al. GVT. 2011; Kandasamy et al Int Immunopharmacol. 2010; Wang et al Respir Res. 2009; Wang et al GVT. 2008; Kong et al Cancer Res. 2008; Mohapatra SS. Can J Physiol Pharmacol. 2007; Mohapatra SS et al J A C I. 2004;

Decreased NPRA Expression/Signaling: an Approach to Treat pulmonary inflammation

 ✓ Intranasal or oral Administration of KP73-102 or pKP73-102 protects from Ovalbumin-Induced AHR and Eosinophilia.

 ✓ Nano-siNPRA Cream modulates eosinophilia and Inflammation in Asthma (Wang et al GVT 2008)

 ✓ Vessel Dilator decreases lung resistance and inflammation in the lung in Ovalbumin – induced asthma model (Wang et al Res Res 2009)

Kandasamy et al Int Immunopharmacol. 2010; Wang et al Respir Res. 2009; Wang et al GVT. 2008

A new approach to delivering drugs to the deep lung

Multifunctional Chitosan Nanoparticles

Passive targeting

- use peptides such as PVGLIG, a substrate for MMPs, to target tumor vasculature
- increase retention in blood circulation by coating with polyethylene glycol

Active targeting

antibodies, peptides, ligands to target delivery specifically to cancer cells

Schematic of "Nano-Cell" strategy: Development of polymer theranostics for lung

Mohapatra et al, Technol & Innov, 2011

- 1) avoid immune rejection: Inhibit cell-mediated immunity, target cell apoptosis and complement-mediated cell lysis
- 2) provide for the immunoprotection of allo- and xenogeneic cell transplants,
- 3) SCs (30-50 µm) appear to become entrapped in the pre-capillary vascular bed of the lung, where the lysed cells are cleared within 15 minutes from the system without deleterious effects to the individual. Mohapatra et al, Technol & Innov, 2011

Mouse lung 15 minutes after injection of DiO-labeled rat SCs

SCs take up nanoparticles and they are seen mouse lung 15 minutes post-injection

In Vitro

In Vivo

Electron micrograph of mouse lung 1 hr after injection of pre-loaded, pre-labeled rat Sertoli cells

Quantitation of FITC-labeled nanoparticles and Curcumin-labeled therapeutic drug in mouse organs 1 hr post-injection

Kumar A. et al. Cell Transplant. 2011

Histology of Lung Sections of Control and Mice treated with SNAP

Ova-Induced Asthmatic Mouse

SNAP THERANOSTICS: THE CONCEPT

Summary and Concluding Remarks

- Nanomedicine provides solutions to delivering drugs to lungs more effectively.
- Targeted drug/gene delivery to diseased lung cells can increase effectiveness, be safer and less expensive.
- Pre-clinical studies have shown efficacy and safety in different models.
- IV injection of nanoparticle pre-loaded Sertoli cells (coupled with drug of choice) can provide a new approach to delivering drugs to the deep lung.
- Drugs get to deep lung, SCs deliver >80% of dispensed drug
- SCs are cleared from the system after delivering nanoparticle load in ~1 hour.
- No inflammation associated with injected or transplanted SCs.