New Horizon Session #3
Nanomedicine Applications for Allergy and Vaccines

Shyam S. Mohapatra, MS, PhD, FAAAAI
Vice Chair of Research, Department of Internal Medicine
Distinguished Professor and Director
Div. of Translational Medicine
Nanomedicine Research Center
USF College of Medicine & JAH VA Hospital,
Tampa, Florida smohapat@health.usf.edu

World Allergy Congresss, Cancun, Mexico
December 4, 2011
Relevant Disclosures

Current Support:
- NIH-NCI (1RO1CA152005-01)
- NIH-NHLBI (1P30HL101265-01)
- NIH (1R41CA139785-01A1)
- ONR (N00014-09-1-1008)
- VA Merit Review (1I01BX000954-01A1)
- VA Research Career Scientist Award
- FL Biomed. Res. Foundation (09BW-07)

Intellectual Property
- Co-inventor (10 patents-USF & ~12 pending),

Co-founder & Chairman of the Board (Consultant)
- TranGenex Nanobiotech Inc
Lung Disease Burden

- Lung Cancer (2011): Estd New cases: 221,130; Deaths: 156,940
- An estd 24 million US adults have COPD
 - 12 million physician-diagnosed and 12 undiagnosed.
 - Past Year Morbidity: chronic bronchitis: 9.9 million emphysema: 4.9 million
 - Past year Mortality: bronchitis: 667, emphysema: 12,790 other chronic lower respiratory diseases (excluding asthma): 111,020
- An estd. 23 million individuals have asthma
 - 12 million of them experienced at least one asthma attack during the survey year.
- Approx. 30,000 people have cystic fibrosis
 - 1 in 3,000 babies are born with the disease;
- ~40,000 infants and 150,000 adults have respiratory distress syndrome
- ~12 million persons have obstructive sleep apnea
What is Nanomedicine?
Challenges in drug delivery to the lung

- **Lungs expel materials** reducing efficiency
- **Patients need to inhale correctly**
- **Drugs need to get into deep lung** which they do not
- **Payload versatility** needs to be increased
- **Particles should range from 1-3 μm** for optimal deposition/delivery
- **Aerosol systems deliver only 10-30% of the dispensed drug**
- **Aerosol systems deliver <100 μg of drug per puff** (mg/dose needed)
- **Inhalers often impart a stigma to the user** (especially young people)
Nanotechnology can change the entire healthcare scene.
Polymeric Nanoparticles: Vehicles for Drug Delivery

- A natural biocompatible cationic polysaccharide from crustacean shells,
- Slowly biodegradable & Nuclease resistant
- Increases transcellular and paracellular transport across mucosal epithelium (mucosal gene delivery)
- Immunostimulatory & Anti-microbial
- Anticoagulant & wound-healing
- Non-toxic, non-hemolytic & Safe
- Cost-effective

Kumar & Mohapatra Human Gene Therapy, 2003
What are some of the examples of potential applications to allergy and asthma?
Thiolated chitosan nanoparticles enhance anti-inflammatory effects of intranasally delivered theophylline

Lee et al Respir Res., 2007
How can NANOTECHNOLOGY help develop novel vaccine for therapies to decrease severity of RSV?

- **Vaccines**
 - Live-attenuated
 - Subunit
 - DNA Vaccines *(Kumar et al. 2002)*

- **Prophylactics**
 - IFN-gamma *(Kumar et al. 2000)*
 - 2-5 OAS *(Behera et al. 2002)*
 - si-RNA *(Zhang et al. 2005, Kong et al. 2007)*

- **Anti-Inflammatory**
 - LTRAs *(Behera et al. 1997)*
 - FP/ Salmeterol *(Singham et al. 2006)*
Nanoparticle-complexed siNS1 Exhibits Antiviral Activity In Vivo

Zhang et al, Nature Medicine 2005

- siNS1 Nanoparticles
 - Reduced RSV replication
- Rx with siNS1 nanoparticles before or after infection with RSV showed
 - decreased virus titers
 - decreased inflammation and AHR.
- human dendritic cells, upon RSV infection, produced
 - elevated type-1 IFN and
 - induced differentiation of naive CD4+ T cells to T helper type 1 (TH1) cells.
NPRA Signaling: A New Target for anti-inflammatory Target

- DNAs:
 - pNPRAi (pNP73102)
 - siNPRA/psiNPRA

- Peptide:
 - KP73-102
 - VD
 - Anantin

- Small molecule:
 - Isatin
 - Isatin-derivatives

Decreased NPRA Expression/Signaling: an Approach to Treat pulmonary inflammation

- Intranasal or oral Administration of KP73-102 or pKP73-102 protects from Ovalbumin-Induced AHR and Eosinophilia.

- Nano-siNPRA Cream modulates eosinophilia and Inflammation in Asthma (Wang et al GVT 2008)

- Vessel Dilator decreases lung resistance and inflammation in the lung in Ovalbumin – induced asthma model (Wang et al Res Res 2009)

A new approach to delivering drugs to the deep lung
Multifunctional Chitosan Nanoparticles

- Passive targeting
 - use peptides such as PVGLIG, a substrate for MMPs, to target tumor vasculature
 - increase retention in blood circulation by coating with polyethylene glycol

- Active targeting
 - antibodies, peptides, ligands to target delivery specifically to cancer cells
1) avoid immune rejection: Inhibit cell-mediated immunity, target cell apoptosis and complement-mediated cell lysis
2) provide for the immunoprotection of allo- and xenogeneic cell transplants,
3) SCs (30-50 µm) appear to become entrapped in the pre-capillary vascular bed of the lung, where the lysed cells are cleared within 15 minutes from the system without deleterious effects to the individual.

Mohapatra et al, Technol & Innov, 2011
Mouse lung 15 minutes after injection of DiO-labeled rat SCs

SCs take up nanoparticles and they are seen mouse lung 15 minutes post-injection
Electron micrograph of mouse lung 1 hr after injection of pre-loaded, pre-labeled rat Sertoli cells

Quantitation of FITC-labeled nanoparticles and Curcumin-labeled therapeutic drug in mouse organs 1 hr post-injection

Specific Absorbance Assay

% of Total Delivered

Lung Kidney Liver Spleen Thymus Control

Mouse Organs

Histology of Lung Sections of Control and Mice treated with SNAP

Ova-Induced Asthmatic Mouse

SNAP THERANOSTICS: THE CONCEPT

Label rat SC
DiL (red) or DiO (green)

Multifunctional Chitosan Nanoaparticle

Xenogen Imaging
Control IR820-1 IR820-2

SNAP (IR820) Control
Summary and Concluding Remarks

- Nanomedicine provides solutions to delivering drugs to lungs more effectively.
- Targeted drug/gene delivery to diseased lung cells can increase effectiveness, be safer and less expensive.
- Pre-clinical studies have shown efficacy and safety in different models.
- IV injection of nanoparticle pre-loaded Sertoli cells (coupled with drug of choice) can provide a new approach to delivering drugs to the deep lung.
- Drugs get to deep lung, SCs deliver >80% of dispensed drug.
- SCs are cleared from the system after delivering nanoparticle load in ~1 hour.
- No inflammation associated with injected or transplanted SCs.